
Yury I Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7430482/publications.pdf Version: 2024-02-01

YIIDV I MILLED

#	Article	IF	CITATIONS
1	Oxidation-Specific Epitopes Are Danger-Associated Molecular Patterns Recognized by Pattern Recognizion Receptors of Innate Immunity. Circulation Research, 2011, 108, 235-248.	4.5	527
2	Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. Journal of Clinical Investigation, 2009, 119, 1335-1349.	8.2	397
3	Macrophages Generate Reactive Oxygen Species in Response to Minimally Oxidized Low-Density Lipoprotein. Circulation Research, 2009, 104, 210-218.	4.5	364
4	Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 2018, 558, 301-306.	27.8	359
5	Minimally Modified LDL Binds to CD14, Induces Macrophage Spreading via TLR4/MD-2, and Inhibits Phagocytosis of Apoptotic Cells. Journal of Biological Chemistry, 2003, 278, 1561-1568.	3.4	338
6	Toll-Like Receptor 4–Dependent and –Independent Cytokine Secretion Induced by Minimally Oxidized Low-Density Lipoprotein in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1213-1219.	2.4	243
7	Oxidized low density lipoprotein and innate immune receptors. Current Opinion in Lipidology, 2003, 14, 437-445.	2.7	164
8	Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature, 2013, 498, 118-122.	27.8	156
9	Oxidative Stress Activates Endothelial Innate Immunity via Sterol Regulatory Element Binding Protein 2 (SREBP2) Transactivation of MicroRNA-92a. Circulation, 2015, 131, 805-814.	1.6	127
10	The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. British Journal of Pharmacology, 2012, 167, 990-999.	5.4	119
11	Lipoprotein Modification and Macrophage Uptake: Role of Pathologic Cholesterol Transport in Atherogenesis. Sub-Cellular Biochemistry, 2010, 51, 229-251.	2.4	111
12	Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends in Endocrinology and Metabolism, 2017, 28, 143-152.	7.1	96
13	AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science, 2019, 363, 1085-1088.	12.6	90
14	Release and Capture of Bioactive Oxidized Phospholipids and Oxidized Cholesteryl Esters During Percutaneous Coronary and Peripheral Arterial Interventions in Humans. Journal of the American College of Cardiology, 2014, 63, 1961-1971.	2.8	88
15	Targeting toll-like receptor-4 (TLR4)—an emerging therapeutic target for persistent pain states. Pain, 2018, 159, 1908-1915.	4.2	88
16	Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathogens, 2019, 15, e1007907.	4.7	86
17	Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis. Translational Research, 2014, 163, 99-108.	5.0	84
18	SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL. Autophagy, 2015, 11, 785-795.	9.1	77

Yury I Miller

#	Article	IF	CITATIONS
19	Lipid rafts as a therapeutic target. Journal of Lipid Research, 2020, 61, 687-695.	4.2	72
20	Graphene biointerfaces for optical stimulation of cells. Science Advances, 2018, 4, eaat0351.	10.3	68
21	Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy, 2018, 14, 120-133.	9.1	62
22	Actin Polymerization in Macrophages in Response to Oxidized LDL and Apoptotic Cells: Role of 12/15-Lipoxygenase and Phosphoinositide 3-Kinase. Molecular Biology of the Cell, 2003, 14, 4196-4206.	2.1	59
23	Toll-Like Receptor-4 and Lipoprotein Accumulation in Macrophages. Trends in Cardiovascular Medicine, 2009, 19, 227-232.	4.9	57
24	Oxidized cholesteryl esters and inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 393-397.	2.4	56
25	Lipid rafts in glial cells: role in neuroinflammation and pain processing. Journal of Lipid Research, 2020, 61, 655-666.	4.2	55
26	Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. DMM Disease Models and Mechanisms, 2015, 8, 989-98.	2.4	54
27	Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Reports, 2018, 23, 2667-2677.	6.4	51
28	Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. Journal of Experimental Medicine, 2021, 218, .	8.5	51
29	AIBP Limits Angiogenesis Through γ-Secretase-Mediated Upregulation of Notch Signaling. Circulation Research, 2017, 120, 1727-1739.	4.5	49
30	Reduced Dietary Omega-6 to Omega-3 Fatty Acid Ratio and 12/15-Lipoxygenase Deficiency Are Protective against Chronic High Fat Diet-Induced Steatohepatitis. PLoS ONE, 2014, 9, e107658.	2.5	47
31	Targeting Lipid Rafts—A Potential Therapy for COVID-19. Frontiers in Immunology, 2020, 11, 574508.	4.8	45
32	Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages. PLoS ONE, 2013, 8, e83145.	2.5	44
33	AIBP protects against metabolic abnormalities and atherosclerosis. Journal of Lipid Research, 2018, 59, 854-863.	4.2	38
34	Regulation of lipid rafts, angiogenesis and inflammation by AIBP. Current Opinion in Lipidology, 2019, 30, 218-223.	2.7	35
35	Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish. Journal of Lipid Research, 2018, 59, 391-399.	4.2	34
36	AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight, 2018, 3, .	5.0	34

YURY I MILLER

#	Article	IF	CITATIONS
37	Oxidation-specific epitopes as targets for biotheranostic applications in humans. Current Opinion in Lipidology, 2013, 24, 426-437.	2.7	31
38	Toll-like receptors and atherosclerosis: oxidized LDL as an endogenous Toll-like receptor ligand. Future Cardiology, 2005, 1, 785-792.	1.2	30
39	Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL. PLoS ONE, 2012, 7, e32378.	2.5	28
40	Inhibition of HIV Replication by Apolipoprotein A-I Binding Protein Targeting the Lipid Rafts. MBio, 2020, 11, .	4.1	24
41	Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nature Communications, 2018, 9, 1310.	12.8	22
42	AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biology, 2020, 37, 101703.	9.0	21
43	From Inert Storage to Biological Activity—In Search of Identity for Oxidized Cholesteryl Esters. Frontiers in Endocrinology, 2020, 11, 602252.	3.5	21
44	Pseudopodium-enriched atypical kinase 1 mediates angiogenesis by modulating GATA2-dependent VEGFR2 transcription. Cell Discovery, 2018, 4, 26.	6.7	19
45	Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density) Tj ETQq1 1 0.784314 2021, 41, e82-e96.	rgBT /Ov 2.4	verlock 10 Tí 18
46	MD-2 binds cholesterol. Biochemical and Biophysical Research Communications, 2016, 470, 877-880.	2.1	17
47	Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Developmental Biology, 2015, 404, 49-60.	2.0	14
48	Biology of Lipid Rafts: Introduction to the Thematic Review Series. Journal of Lipid Research, 2020, 61, 598-600.	4.2	14
49	Cholesterol Efflux-Independent Modification of Lipid Rafts by AIBP (Apolipoprotein A-I Binding) Tj ETQq1 1 0.7843	14 rgBT / 2.4	Overlock 10
50	Deficient Cholesterol Esterification in Plasma of apoc2 Knockout Zebrafish and Familial Chylomicronemia Patients. PLoS ONE, 2017, 12, e0169939.	2.5	9
51	Palmitate and minimally-modified low-density lipoprotein cooperatively promote inflammatory responses in macrophages. PLoS ONE, 2018, 13, e0193649.	2.5	9
52	A monoclonal antibody to assess oxidized cholesteryl esters associated with apoAI and apoB-100 lipoproteins in human plasma. Journal of Lipid Research, 2019, 60, 436-445.	4.2	7
53	Trained Immunity and HIV Infection. Frontiers in Immunology, 0, 13, .	4.8	6
54	Reduced AIBP expression in bronchial epithelial cells of asthmatic patients: Potential therapeutic target. Clinical and Experimental Allergy, 2022, 52, 979-984.	2.9	0