Eric Soler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7430470/publications.pdf Version: 2024-02-01

FDIC SOLED

#	Article	IF	CITATIONS
1	Stepwise GATA1 and SMC3 mutations alter megakaryocyte differentiation in a Down syndrome leukemia model. Journal of Clinical Investigation, 2022, 132, .	8.2	11
2	Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. International Journal of Molecular Sciences, 2022, 23, 6149.	4.1	3
3	p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood, 2021, 137, 89-102.	1.4	46
4	Enhancers, spatial chromosome structuring and pathological changes: towards a better understanding of complex genome alterations. Hematologie, 2021, 27, 114-131.	0.0	0
5	<code>PPAR^{\hat{J}3}</code> agonists promote the resolution of myelofibrosis in preclinical models. Journal of Clinical Investigation, 2021, 131, .	8.2	4
6	Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood, 2020, 136, 698-714.	1.4	28
7	When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Current Opinion in Hematology, 2020, 27, 141-148.	2.5	11
8	Modeling Acute Megakaryoblastic Leukemia of Down Syndrome Using Induced Pluripotent Stem Cells. Blood, 2020, 136, 1-1.	1.4	1
9	Genome-wide characterization of mammalian promoters with distal enhancer functions. Nature Genetics, 2017, 49, 1073-1081.	21.4	222
10	ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia. Cancer Cell, 2017, 31, 452-465.	16.8	60
11	Unbiased Interrogation of 3D Genome Topology Using Chromosome Conformation Capture Coupled to High-Throughput Sequencing (4C-Seq). Methods in Molecular Biology, 2017, 1507, 199-220.	0.9	11
12	Macrophage production and activation are dependent on TRIM33. Oncotarget, 2017, 8, 5111-5122.	1.8	32
13	Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Letters, 2016, 590, 4084-4104.	2.8	7
14	ETO2-GLIS2 Controls Differentiation Arrest and Self-Renewal through Aberrant Enhancers Regulation in Pediatric Leukemia. Blood, 2016, 128, 572-572.	1.4	0
15	Long-range gene regulation and novel therapeutic applications. Blood, 2015, 125, 1521-1525.	1.4	9
16	The SCL/TAL1 Transcription Factor Represses the Stress Protein DDiT4/REDD1 in Human Hematopoietic Stem/Progenitor Cells. Stem Cells, 2015, 33, 2268-2279.	3.2	26
17	TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nature Communications, 2015, 6, 8900.	12.8	42
18	Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nature Communications, 2015, 6, 8893.	12.8	67

ERIC SOLER

#	Article	IF	CITATIONS
19	The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors. Cell Stem Cell, 2015, 17, 287-299.	11.1	74
20	Pre-B Cell Receptor Signaling Induces Immunoglobulin κ Locus Accessibility by Functional Redistribution of Enhancer-Mediated Chromatin Interactions. PLoS Biology, 2014, 12, e1001791.	5.6	72
21	NLS-tagging: an alternative strategy to tag nuclear proteins. Nucleic Acids Research, 2014, 42, e163-e163.	14.5	10
22	Targeting Epigenetics to Speed Up Repair. Cell Stem Cell, 2014, 14, 553-554.	11.1	1
23	HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. Journal of Clinical Investigation, 2014, 124, 1699-1710.	8.2	157
24	Locus-Specific Proteomics by TChP: Targeted Chromatin Purification. Cell Reports, 2013, 4, 589-600.	6.4	32
25	Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nature Protocols, 2013, 8, 509-524.	12.0	130
26	In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes and Development, 2013, 27, 767-777.	5.9	119
27	r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Research, 2013, 41, e132-e132.	14.5	92
28	Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis. Blood, 2013, 121, 2902-2913.	1.4	32
29	HBS1L-MYB intergenic Variants Modulate Fetal Hemoglobin Via Long-Range MYB Enhancers. Blood, 2013, 122, 43-43.	1.4	1
30	Nucleolin Interacts with US11 Protein of Herpes Simplex Virus 1 and Is Involved in Its Trafficking. Journal of Virology, 2012, 86, 1449-1457.	3.4	41
31	A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1–CoREST complex through the dimethylation of its SNAG domain. Journal of Cell Science, 2012, 125, 993-1002.	2.0	32
32	A Novel Complex, RUNX1-MYEF2, Represses Hematopoietic Genes in Erythroid Cells. Molecular and Cellular Biology, 2012, 32, 3814-3822.	2.3	32
33	Transcription regulation by distal enhancers. Transcription, 2012, 3, 181-186.	3.1	39
34	Dynamic long-range chromatin interactions control <i>Myb</i> proto-oncogene transcription during erythroid development. EMBO Journal, 2012, 31, 986-999.	7.8	119
35	DNA-binding factor CTCF and long-range gene interactions in V(D)J recombination and oncogene activation. Blood, 2012, 119, 6209-6218.	1.4	31
36	The DNA-Binding Protein CTCF Limits Proximal Vκ Recombination and Restricts κ Enhancer Interactions to the Immunoglobulin κ Light Chain Locus. Immunity, 2011, 35, 501-513.	14.3	114

Eric Soler

#	Article	IF	CITATIONS
37	A systems approach to analyze transcription factors in mammalian cells. Methods, 2011, 53, 151-162.	3.8	23
38	Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nature Medicine, 2010, 16, 571-579.	30.7	317
39	The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes and Development, 2010, 24, 277-289.	5.9	214
40	Recombinant rotavirus inner core proteins produced in the milk of transgenic rabbits confer a high level of protection after intrarectal delivery. Vaccine, 2007, 25, 6373-6380.	3.8	12
41	Preparation of recombinant vaccines. Biotechnology Annual Review, 2007, 13, 65-94.	2.1	26
42	Preparation of recombinant proteins in milk to improve human and animal health. Reproduction, Nutrition, Development, 2006, 46, 579-588.	1.9	20
43	Production of Two Vaccinating Recombinant Rotavirus Proteins in the Milk of Transgenic Rabbits. Transgenic Research, 2005, 14, 833-844.	2.4	31