Marco Lorenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7430259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas. Medical Image Analysis, 2022, 75, 102265.	11.6	5
2	Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners. American Journal of Ophthalmology, 2022, 238, 52-65.	3.3	12
3	SimulAD: a dynamical model for personalized simulation and disease staging in Alzheimer's disease. Neurobiology of Aging, 2022, 113, 73-83.	3.1	2
4	Improving statistical power of glaucoma clinical trials using an ensemble of cyclical generative adversarial networks. Medical Image Analysis, 2021, 68, 101906.	11.6	11
5	Estimation of Imaging Biomarker's Progression in Post-infarct Patients Using Cross-sectional Data. Lecture Notes in Computer Science, 2021, , 108-116.	1.3	0
6	A Probabilistic Framework for Modeling the Variability Across Federated Datasets. Lecture Notes in Computer Science, 2021, , 701-714.	1.3	4
7	Multivariate Data Analysis Suggests The Link Between Brain Microstructure And Cognitive Impairment In Multiple Sclerosis. , 2021, , .		3
8	Simulating the outcome of amyloid treatments in Alzheimer's disease from imaging and clinical data. Brain Communications, 2021, 3, fcab091.	3.3	10
9	Disentangling the association between genetics and functional connectivity in Mild Cognitive Impairment. , 2021, , .		3
10	Investigating hypotheses of neurodegeneration by learning dynamical systems of protein propagation in the brain. Neurolmage, 2021, 235, 117980.	4.2	10
11	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	1.9	20
12	Beyond Riemannian geometry. , 2020, , 169-229.		16
13	Monotonic Gaussian Process for spatio-temporal disease progression modeling in brain imaging data. Neurolmage, 2020, 205, 116266.	4.2	14
14	Voxel-based assessments of treatment effects on longitudinal brain changes in the Multidomain Alzheimer Preventive Trial cohort. Neurobiology of Aging, 2020, 94, 50-59.	3.1	8
15	Federated Learning in Distributed Medical Databases: Meta-Analysis of Large-Scale Subcortical Brain Data. , 2019, , .		107
16	Modeling and Inference of Spatio-Temporal Protein Dynamics Across Brain Networks. Lecture Notes in Computer Science, 2019, , 57-69.	1.3	9
17	A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments. NeuroImage, 2019, 198, 255-270.	4.2	29
18	DIVE: A spatiotemporal progression model of brain pathology in neurodegenerative disorders. NeuroImage, 2019, 192, 166-177.	4.2	45

MARCO LORENZI

#	Article	IF	CITATIONS
19	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	4.2	16
20	Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and prediction in Alzheimer's disease. NeuroImage, 2019, 190, 56-68.	4.2	80
21	Differences in topological progression profile among neurodegenerative diseases from imaging data. ELife, 2019, 8, .	6.0	11
22	Susceptibility of brain atrophy to <i>TRIB3</i> in Alzheimer's disease, evidence from functional prioritization in imaging genetics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3162-3167.	7.1	41
23	Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci. Brain, 2018, 141, 2167-2180.	7.6	56
24	A magnetic resonance multi-atlas for the neonatal rabbit brain. NeuroImage, 2018, 179, 187-198.	4.2	12
25	Selection bias in the reported performances of AD classification pipelines. NeuroImage: Clinical, 2017, 14, 400-416.	2.7	30
26	[O1–12–03]: MODELING AND PREDICTION OF THE NATURAL HISTORY OF NEURODEGENERATION FROM LONGITUDINAL TRIAL DATA. Alzheimer's and Dementia, 2017, 13, P222.	0.8	0
27	A Vertex Clustering Model for Disease Progression: Application to Cortical Thickness Images. Lecture Notes in Computer Science, 2017, , 134-145.	1.3	6
28	Secure multivariate large-scale multi-centric analysis through on-line learning: an imaging genetics case study. , 2017, , .		0
29	Longitudinal Analysis of Image Time Series with Diffeomorphic Deformations: A Computational Framework Based on Stationary Velocity Fields. Frontiers in Neuroscience, 2016, 10, 236.	2.8	15
30	Accurate Small Deformation Exponential Approximant to Integrate Large Velocity Fields: Application to Image Registration. , 2016, , .		0
31	P1-121: Linking Gene Pathways and Brain Atrophy in Alzheimer's Disease. , 2016, 12, P449-P450.		1
32	A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease. Neurolmage, 2016, 134, 35-52.	4.2	20
33	Partial least squares modelling for imaging-genetics in Alzheimer's disease: Plausibility and generalization. , 2016, , .		9
34	Multimodal Image Analysis in Alzheimer's Disease via Statistical Modelling of Non-local Intensity Correlations. Scientific Reports, 2016, 6, 22161.	3.3	18
35	Spatio-Temporal Shape Analysis of Cross-Sectional Data for Detection of Early Changes in Neurodegenerative Disease. Lecture Notes in Computer Science, 2016, , 63-75.	1.3	4
36	Simulating Patient Specific Multiple Time-Point MRIs from a Biophysical Model of Brain Deformation in Alzheimer's Disease. , 2016, , 167-176.		0

MARCO LORENZI

#	Article	IF	CITATIONS
37	Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images. Neurobiology of Aging, 2015, 36, S42-S52.	3.1	54
38	Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease. NeuroImage, 2015, 115, 224-234.	4.2	12
39	Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. NeuroImage, 2015, 123, 149-164.	4.2	63
40	Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series. Lecture Notes in Computer Science, 2015, 24, 626-637.	1.3	10
41	A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero Shapes. Lecture Notes in Computer Science, 2015, 24, 205-218.	1.3	10
42	Efficient Parallel Transport of Deformations in Time Series of Images: From Schild's to Pole Ladder. Journal of Mathematical Imaging and Vision, 2014, 50, 5-17.	1.3	34
43	Impact of alcohol consumption in healthy adults: A magnetic resonance imaging investigation. Psychiatry Research - Neuroimaging, 2014, 224, 96-103.	1.8	8
44	A Biophysical Model of Shape Changes due to Atrophy in the Brain with Alzheimer's Disease. Lecture Notes in Computer Science, 2014, 17, 41-48.	1.3	2
45	Discrete Ladders for Parallel Transport in Transformation Groups with an Affine Connection Structure. Signals and Communication Technology, 2014, , 243-271.	0.5	Ο
46	Geodesics, Parallel Transport & One-Parameter Subgroups for Diffeomorphic Image Registration. International Journal of Computer Vision, 2013, 105, 111-127.	15.6	49
47	Structural brain features of borderline personality and bipolar disorders. Psychiatry Research - Neuroimaging, 2013, 213, 83-91.	1.8	43
48	LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage, 2013, 81, 470-483.	4.2	123
49	Sparse Scale-Space Decomposition of Volume Changes in Deformations Fields. Lecture Notes in Computer Science, 2013, 16, 328-335.	1.3	3
50	Regional Flux Analysis of Longitudinal Atrophy in Alzheimer's Disease. Lecture Notes in Computer Science, 2012, 15, 739-746.	1.3	8
51	Effect of Memantine on Resting State Default Mode Network Activity in Alzheimer's Disease. Drugs and Aging, 2011, 28, 205-217.	2.7	57
52	Schild's Ladder for the Parallel Transport of Deformations in Time Series of Images. Lecture Notes in Computer Science, 2011, 22, 463-474.	1.3	37
53	Mapping the Effects of Al² 1 â^' 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields. Lecture Notes in Computer Science, 2011, 14, 663-670. 	1.3	17
54	Metabolic Compensation and Depression in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2010, 29, 37-45.	1.5	18