Vera L Trainer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743012/publications.pdf

Version: 2024-02-01

		126907]	38484
58	5,384	33		58
papers	citations	h-index		g-index
59	59	59		5078
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae, 2015, 49, 68-93.	4.8	555
2	Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 2008, 8, 39-53.	4.8	530
3	Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae, 2012, 14, 271-300.	4.8	429
4	An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters, 2016, 43, 10366-10376.	4.0	400
5	Impacts of climate variability and future climate change on harmful algal blooms and human health. Environmental Health, 2008, 7, S4.	4.0	320
6	Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature, 2005, 434, 763-767.	27.8	271
7	Harmful algal blooms along the North American west coast region: History, trends, causes, and impacts. Harmful Algae, 2012, 19, 133-159.	4.8	254
8	Future HAB science: Directions and challenges in a changing climate. Harmful Algae, 2020, 91, 101632.	4.8	223
9	Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnology and Oceanography, 2005, 50, 1908-1917.	3.1	165
10	Pelagic harmful algal blooms and climate change: Lessons from nature's experiments with extremes. Harmful Algae, 2020, 91, 101591.	4.8	164
11	Harmful Algal Blooms in Coastal Upwelling Systems. Oceanography, 2005, 18, 184-197.	1.0	142
12	Climatic regulation of the neurotoxin domoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 239-244.	7.1	133
13	Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State. Marine Drugs, 2013, 11, 1815-1835.	4.6	132
14	CRYPTIC AND PSEUDOâ€CRYPTIC DIVERSITY IN DIATOMSâ€"WITH DESCRIPTIONS OF <i>PSEUDOâ€NITZSCHIA HASLEANA</i> SP. NOV. AND <i>P. FRYXELLIANA</i> SP. NOV. sup>1 Journal of Phycology, 2012, 48, 436-454.	2.3	120
15	Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5887-5892.	7.1	104
16	Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae, 2007, 6, 449-459.	4.8	101
17	Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae, 2009, 8, 463-477.	4.8	92
18	Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae, 2007, 6, 166-174.	4.8	89

#	Article	IF	CITATIONS
19	Variability of Pseudo- <i>nitzschia</i> and domoic acid in the Juan de Fuca eddy region and its adjacent shelves. Limnology and Oceanography, 2009, 54, 289-308.	3.1	76
20	An ecological study of a massive bloom of toxigenic Pseudoâ€nitzschia cuspidata off the Washington State coast. Limnology and Oceanography, 2009, 54, 1461-1474.	3.1	67
21	Dissolved saxitoxin causes transient inhibition of sensorimotor function in larval Pacific herring (Clupea harengus pallasi). Marine Biology, 2005, 147, 1393-1402.	1.5	58
22	Monitoring Approaches for Early Warning of Domoic Acid Events in Washington State. Oceanography, 2005, 18, 228-237.	1.0	58
23	MASS SEXUAL REPRODUCTION IN THE TOXIGENIC DIATOMS PSEUDO-NITZSCHIA AUSTRALIS AND P. PUNGENS (BACILLARIOPHYCEAE) ON THE WASHINGTON COAST, USA1. Journal of Phycology, 2010, 46, 41-52.	2.3	56
24	The association between razor clam consumption and memory in the CoASTAL cohort. Harmful Algae, 2016, 57, 20-25.	4.8	52
25	Environmental dynamics of red Noctiluca scintillans bloom in tropical coastal waters. Marine Pollution Bulletin, 2016, 111, 277-286.	5.0	52
26	Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms. Environmental Health, 2008, 7, S2.	4.0	50
27	ldentification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. Harmful Algae, 2017, 68, 152-167.	4.8	50
28	Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae, 2017, 62, 136-147.	4.8	48
29	Characterization of oceanic Noctiluca blooms not associated with hypoxia in the Northeastern Arabian Sea. Harmful Algae, 2018, 74, 46-57.	4.8	43
30	Environmental influences on the seasonal distribution of <i>Vibrio parahaemolyticus </i> in the Pacific Northwest of the USA. FEMS Microbiology Ecology, 2015, 91, fiv121.	2.7	42
31	Rapid Enzyme-linked Immunosorbent Assay for Detection of the Algal Toxin Domoic Acid. Journal of Shellfish Research, 2008, 27, 1301-1310.	0.9	39
32	The relative influences of El Niñoâ€Southern Oscillation and Pacific Decadal Oscillation on paralytic shellfish toxin accumulation in northwest Pacific shellfish. Limnology and Oceanography, 2010, 55, 2262-2274.	3.1	39
33	In Situ Strain-Level Detection and Identification of <i>Vibrio parahaemolyticus</i> Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2013, 85, 2630-2637.	6.5	38
34	Effects of temperature and salinity on the growth of <i>Alexandrium</i> (Dinophyceae) isolates from the Salish Sea. Journal of Phycology, 2016, 52, 230-238.	2.3	34
35	Integrated Ocean Observing System in Support of Forecasting Harmful Algal Blooms. Marine Technology Society Journal, 2010, 44, 99-121.	0.4	28
36	A springtime source of toxic Pseudo-nitzschia cells on razor clam beaches in the Pacific Northwest. Harmful Algae, 2013, 25, 1-14.	4.8	25

#	Article	IF	CITATIONS
37	Screening Tests for the Rapid Detection of Diarrhetic Shellfish Toxins in Washington State. Marine Drugs, 2013, 11, 3718-3734.	4.6	25
38	Intrinsic growth and microzooplankton grazing on toxigenic <i>Pseudoâ€nitzschia</i> spp. diatoms from the coastal northeast Pacific. Limnology and Oceanography, 2008, 53, 1352-1368.	3.1	24
39	Case diagnosis and characterization of suspected paralytic shellfish poisoning in Alaska. Harmful Algae, 2016, 57, 45-50.	4.8	24
40	GENETIC POPULATION STRUCTURE OF <i>PSEUDOâ€NITZSCHIA PUNGENS</i> (BACILLARIOPHYCEAE) FROM THE PACIFIC NORTHWEST AND THE NORTH SEA ¹ . Journal of Phycology, 2009, 45, 1037-1045.	2.3	23
41	Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington. Marine Drugs, 2008, 6, 103-116.	4.6	21
42	GlobalHAB: A New Program to Promote International Research, Observations, and Modeling of Harmful Algal Blooms in Aquatic Systems. Oceanography, 2017, 30, 70-81.	1.0	21
43	Cooperation of Science and Management for Harmful Algal Blooms: Domoic Acid and the Washington Coast Razor Clam Fishery. Coastal Management, 2012, 40, 33-54.	2.0	20
44	Dynamics of seagrass bed microbial communities in artificial Chattonella blooms: A laboratory microcosm study. Harmful Algae, 2019, 84, 139-150.	4.8	17
45	Enhancing Shellfish Safety in Alaska through Monitoring of Harmful Algae and Their Toxins. Journal of Shellfish Research, 2014, 33, 531-539.	0.9	16
46	Perception of risk for domoic acid related health problems: A cross-cultural study. Harmful Algae, 2016, 57, 39-44.	4.8	16
47	The successional formation and release of domoic acid in a Pseudo-nitzschia bloom in the Juan de Fuca Eddy: A drifter study. Harmful Algae, 2018, 79, 105-114.	4.8	14
48	Remote sampling of harmful algal blooms: A case study on the Washington State coast. Harmful Algae, 2012, 19, 39-45.	4.8	12
49	Better Regional Ocean Observing Through Cross-National Cooperation: A Case Study From the Northeast Pacific. Frontiers in Marine Science, 2019, 6, .	2.5	12
50	The effects of salinity on the cellular permeability and cytotoxicity of <i>Heterosigma akashiwo</i> Journal of Phycology, 2016, 52, 745-760.	2.3	11
51	Temporal and spatial distribution of Azadinium species in the inland and coastal waters of the Pacific northwest in 2014–2018. Harmful Algae, 2020, 98, 101874.	4.8	9
52	Diarrhetic Shellfish Toxins in Primorsky Krai, Russia. Journal of Shellfish Research, 2015, 34, 1151-1160.	0.9	8
53	GlobalHAB: Fostering International Coordination on Harmful Algal Bloom Research in Aquatic Systems. Ecological Studies, 2018, , 425-447.	1.2	7
54	The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State. Harmful Algae, 2019, 89, 101665.	4.8	7

#	Article	IF	CITATION
55	Assessment of sodium channel mutations in Makah tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning. Harmful Algae, 2016, 57, 26-34.	4.8	6
56	Improving landings forecasts using environmental covariates: A case study on the Indian oil sardine (<i>Sardinella longiceps</i>). Fisheries Oceanography, 2021, 30, 623-642.	1.7	5
57	Microsatellite Markers for Population Genetic Applications in the Domoic Acid-producing Diatom Pseudo-nitzschia australis Frenguelli (Bacillariophyceae). Protist, 2017, 168, 197-205.	1.5	3
58	Development of coastal upwelling edge detection algorithms associated with harmful algal blooms off the Washington coast using sea surface temperature imagery. , 2005, , .		2