
Rhett A Kovall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of the CSL-Notch-Mastermind Ternary Complex Bound to DNA. Cell, 2006, 124, 985-996.	28.9	317
2	The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Developmental Cell, 2017, 41, 228-241.	7.0	291
3	Mechanistic Insights into Notch Receptor Signaling from Structural and Biochemical Studies. Current Topics in Developmental Biology, 2010, 92, 31-71.	2.2	184
4	Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO Journal, 2004, 23, 3441-3451.	7.8	141
5	Crystal structure of human α-tocopherol transfer protein bound to its ligand: Implications for ataxia with vitamin E deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14713-14718.	7.1	121
6	Type II restriction endonucleases: structural, functional and evolutionary relationships. Current Opinion in Chemical Biology, 1999, 3, 578-583.	6.1	119
7	Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Current Opinion in Structural Biology, 2007, 17, 117-127.	5.7	93
8	RAM-induced Allostery Facilitates Assembly of a Notch Pathway Active Transcription Complex. Journal of Biological Chemistry, 2008, 283, 14781-14791.	3.4	82
9	A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Research, 2016, 44, 4703-4720.	14.5	77
10	Activation of the Notch Signaling Pathway InÂVivo Elicits Changes in CSL Nuclear Dynamics. Developmental Cell, 2018, 44, 611-623.e7.	7.0	74
11	Structure and Function of the CSL-KyoT2 Corepressor Complex: A Negative Regulator of Notch Signaling. Structure, 2014, 22, 70-81.	3.3	56
12	<scp>RBPJ</scp> / <scp>CBF</scp> 1 interacts with L3 <scp>MBTL</scp> 3/ <scp>MBT</scp> 1 to promote repression of Notch signaling via histone demethylase <scp>KDM</scp> 1A/ <scp>LSD</scp> 1. EMBO Journal, 2017, 36, 3232-3249.	7.8	54
13	Structure and Function of the Su(H)-Hairless Repressor Complex, the Major Antagonist of Notch Signaling in Drosophila melanogaster. PLoS Biology, 2016, 14, e1002509.	5.6	53
14	Transcriptional Repression in the Notch Pathway. Journal of Biological Chemistry, 2011, 286, 14892-14902.	3.4	50
15	Structural and functional analysis of the repressor complex in the Notch signaling pathway of <i>Drosophila melanogaster</i> . Molecular Biology of the Cell, 2011, 22, 3242-3252.	2.1	44
16	Thermodynamic and structural insights into CSLâ€DNA complexes. Protein Science, 2010, 19, 34-46.	7.6	43
17	Characterization of CSL (CBF-1, Su(H), Lag-1) Mutants Reveals Differences in Signaling Mediated by Notch1 and Notch2. Journal of Biological Chemistry, 2012, 287, 34904-34916.	3.4	42
18	Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e91813.	2.5	40

Rhett A Kovall

#	Article	IF	CITATIONS
19	Structural and Functional Studies of the RBPJ-SHARP Complex Reveal a Conserved Corepressor Binding Site. Cell Reports, 2019, 26, 845-854.e6.	6.4	38
20	A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development. Developmental Cell, 2019, 50, 367-380.e7.	7.0	35
21	Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. Journal of Biological Chemistry, 2017, 292, 10549-10563.	3.4	34
22	Molecular Basis of Differential B-Pentamer Stability of Shiga Toxins 1 and 2. PLoS ONE, 2010, 5, e15153.	2.5	31
23	Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. Advances in Experimental Medicine and Biology, 2021, 1287, 9-30.	1.6	30
24	CSL-Associated Corepressor and Coactivator Complexes. Advances in Experimental Medicine and Biology, 2018, 1066, 279-295.	1.6	27
25	Molecular Analysis of the Notch Repressor-Complex in Drosophila: Characterization of Potential Hairless Binding Sites on Suppressor of Hairless. PLoS ONE, 2011, 6, e27986.	2.5	19
26	A combination of computational and experimental approaches identifies DNA sequence constraints associated with target site binding specificity of the transcription factor CSL. Nucleic Acids Research, 2014, 42, 10550-10563.	14.5	16
27	Thermodynamic binding analysis of Notch transcription complexes from Drosophila melanogaster. Protein Science, 2015, 24, 812-822.	7.6	14
28	Structurally conserved binding motifs of transcriptional regulators to notch nuclear effector CSL. Experimental Biology and Medicine, 2019, 244, 1520-1529.	2.4	13
29	Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. ELife, 2020, 9, .	6.0	13
30	Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Science Translational Medicine, 2022, 14, eabb7695.	12.4	13
31	Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biology, 2020, 18, e3000850.	5.6	11
32	Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Scientific Reports, 2017, 7, 11820.	3.3	10
33	PIM-induced phosphorylation of Notch3 promotes breast cancer tumorigenicity in a CSL-independent fashion. Journal of Biological Chemistry, 2021, 296, 100593.	3.4	9
34	Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genetics, 2021, 17, e1009890.	3.5	7
35	Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genetics, 2021, 17, e1009039.	3.5	4
36	Structural biology: Gaining atomic level insight into the biological function of macromolecules. Experimental Biology and Medicine, 2019, 244, 1507-1509.	2.4	1

#	Article	IF	CITATIONS
37	In Notch, One ANK Repeat Is Not Like the Other. Structure, 2012, 20, 202-204.	3.3	0
38	Title is missing!. , 2020, 18, e3000850.		0
39	Title is missing!. , 2020, 18, e3000850.		0
40	Title is missing!. , 2020, 18, e3000850.		0
41	Title is missing!. , 2020, 18, e3000850.		0
42	Title is missing!. , 2020, 18, e3000850.		0
43	Title is missing!. , 2020, 18, e3000850.		0
44	Title is missing!. , 2020, 18, e3000850.		0
45	Title is missing!. , 2020, 18, e3000850.		0