
Irawan Satriotomo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiazolidinedione Class of Peroxisome Proliferator-Activated Receptor Î ³ Agonists Prevents Neuronal Damage, Motor Dysfunction, Myelin Loss, Neuropathic Pain, and Inflammation after Spinal Cord Injury in Adult Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1002-1012.	2.5	216
2	JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. Journal of Neurochemistry, 2006, 98, 1353-1368.	3.9	201
3	Peroxisome proliferator-activated receptor-γ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. Journal of Neurochemistry, 2006, 101, 41-56.	3.9	190
4	Repetitive Intermittent Hypoxia Induces Respiratory and Somatic Motor Recovery after Chronic Cervical Spinal Injury. Journal of Neuroscience, 2012, 32, 3591-3600.	3.6	162
5	Spinal Adenosine A2a Receptor Activation Elicits Long-Lasting Phrenic Motor Facilitation. Journal of Neuroscience, 2008, 28, 2033-2042.	3.6	136
6	Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 535-542.	5.6	89
7	Spinal plasticity following intermittent hypoxia: implications for spinal injury. Annals of the New York Academy of Sciences, 2010, 1198, 252-259.	3.8	85
8	NADPH oxidase activity is necessary for acute intermittent hypoxiaâ€induced phrenic longâ€term facilitation. Journal of Physiology, 2009, 587, 1931-1942.	2.9	64
9	Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus. Experimental Neurology, 2012, 237, 103-115.	4.1	59
10	Substance P is a promoter of adult neural progenitor cell proliferation under normal and ischemic conditions. Journal of Neurosurgery, 2007, 107, 593-599.	1.6	55
11	Early maternal deprivation induces alterations in brain-derived neurotrophic factor expression in the developing rat hippocampus. Neuroscience Letters, 2004, 372, 68-73.	2.1	53
12	Spinal Vascular Endothelial Growth Factor Induces Phrenic Motor Facilitation via Extracellular Signal-Regulated Kinase and Akt Signaling. Journal of Neuroscience, 2011, 31, 7682-7690.	3.6	52
13	Okadaic Acid-Sensitive Protein Phosphatases Constrain Phrenic Long-Term Facilitation after Sustained Hypoxia. Journal of Neuroscience, 2008, 28, 2949-2958.	3.6	51
14	Ventilatory control in ALS. Respiratory Physiology and Neurobiology, 2013, 189, 429-437.	1.6	50
15	Cervical Spinal Erythropoietin Induces Phrenic Motor Facilitation via Extracellular Signal-Regulated Protein Kinase and Akt Signaling. Journal of Neuroscience, 2012, 32, 5973-5983.	3.6	48
16	Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons. Neuroscience, 2016, 322, 479-488.	2.3	48
17	B1 and TRPV-1 Receptor Genes and Their Relationship to Hyperalgesia Following Spinal Cord Injury. Spine, 2006, 31, 2778-2782.	2.0	46
18	Application of the physical disector to the central nervous system: Estimation of the total number of neurons in subdivisions of the rat hippocampus. Kaibogaku Zasshi Journal of Anatomy, 2005, 80, 153-162.	1.2	39

IRAWAN SATRIOTOMO

#	Article	IF	CITATIONS
19	Serotonin-induced in vitro long-term facilitation exhibits differential pattern sensitivity in cervical and thoracic inspiratory motor output. Neuroscience, 2006, 142, 885-892.	2.3	38
20	Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS. Experimental Neurology, 2015, 273, 138-150.	4.1	34
21	Embryological consideration of drainage of the left testicular vein into the ipsilateral renal vein: analysis of cases of a double inferior vena cava. Journal of Developmental and Physical Disabilities, 2001, 24, 142-152.	3.6	31
22	Short-term ethanol exposure alters calbindin D28k and glial fibrillary acidic protein immunoreactivity in hippocampus of mice. Brain Research, 2000, 879, 55-64.	2.2	29
23	Considerations for the Optimization of Induced White Matter Injury Preclinical Models. Frontiers in Neurology, 2015, 6, 172.	2.4	29
24	Oligodendrocyte myelin glycoprotein (OMgp) in rat hippocampus is depleted by chronic ethanol consumption. Neuroscience Letters, 2006, 406, 76-80.	2.1	25
25	The effect of the timing of prenatal X-irradiation on Purkinje cell numbers in rat cerebellum. Developmental Brain Research, 2002, 139, 159-166.	1.7	23
26	Role of vasopressin and its antagonism in stroke related edema. Journal of Neuroscience Research, 2014, 92, 1091-1099.	2.9	23
27	Mechanisms of Enhanced Phrenic Long-Term Facilitation in <i>SOD1^{G93A}</i> Rats. Journal of Neuroscience, 2017, 37, 5834-5845.	3.6	21
28	Topographical uptake of blood-borne horseradish peroxidase (HRP) in the murine testis at the light microscopic level. Journal of Developmental and Physical Disabilities, 2002, 21, 74-80.	3.6	20
29	Compensatory plasticity in diaphragm and intercostal muscle utilization in a rat model of ALS. Experimental Neurology, 2018, 299, 148-156.	4.1	19
30	Changes of parvalbumin immunoreactive neurons and GFAP immunoreactive astrocytes in the rat lateral geniculate nucleus following monocular enucleation. Neuroscience Letters, 2006, 395, 149-154.	2.1	18
31	Treatment of stroke related refractory brain edema using mixed vasopressin antagonism: a case report and review of the literature. BMC Neurology, 2014, 14, 213.	1.8	17
32	Neither serotonin nor adenosine-dependent mechanisms preserve ventilatory capacity in ALS rats. Respiratory Physiology and Neurobiology, 2014, 197, 19-28.	1.6	14
33	Effects of Monocular Enucleation on Calbindin-D 28k and c-Fos Expression in the Lateral Geniculate Nucleus in Rats. Okajimas Folia Anatomica Japonica, 2005, 82, 9-18.	1.2	13
34	Colocalization of taurine and glial fibrillary acidic protein immunoreactivity in mouse hippocampus induced by short-term ethanol exposure. Brain Research, 2003, 959, 160-164.	2.2	12
35	Effect of short-term ethanol exposure on the suprachiasmatic nucleus of hypothalamus: immunohystochemical study in mice. Brain Research, 1999, 847, 124-129.	2.2	11
36	Adenosine 2A receptor inhibition protects phrenic motor neurons from cell death induced by protein synthesis inhibition. Experimental Neurology, 2020, 323, 113067.	4.1	10

IRAWAN SATRIOTOMO

#	Article	IF	CITATIONS
37	Excessive testosterone treatment and castration induce reactive astrocytes and fos immunoreactivity in suprachiasmatic nucleus of mice. Brain Research, 2004, 1020, 130-139.	2.2	7
38	Prenatal X-irradiation increases GFAP- and calbindin D28k-immunoreactivity in the medial subdivision of the nucleus of solitary tract in the rat. Journal of the Autonomic Nervous System, 2000, 80, 8-13.	1.9	6
39	Parabrachial inputs to Fos-immunoreactive neurons in the lateral central nucleus of amygdala activated by hypotension: a light and electron microscopic study in the rat. Brain Research Bulletin, 2004, 64, 171-180.	3.0	5
40	Enhanced Phrenic Longâ€Term Facilitation (pLTF) Following Repetitive Acute Intermittent Hypoxia. FASEB Journal, 2010, 24, 799.14.	0.5	4
41	Optimization of a Clinically Relevant Model of White Matter Stroke in Mice: Histological and Functional Evidences. Journal of Neurology and Neurosurgery, 2015, 02, .	0.3	3
42	Phrenic, but not hypoglossal, motor output is diminished in a rat model of amyotrophic lateral sclerosis (ALS). FASEB Journal, 2006, 20, A1212.	0.5	3
43	Erythropoietin (EPO)â€induced phrenic motor facilitation (PMF) requires ERK activation. FASEB Journal, 2010, 24, 799.8.	0.5	2
44	The Effects of Prenatal X-irradiation on Hypoglossal Nucleus: A GFAP Immunohistochemical Study. Okajimas Folia Anatomica Japonica, 2000, 77, 181-188.	1.2	1
45	Age-related changes in growth hormone-immunoreactive cells in the anterior pituitary gland of Jcl: Wistar-TgN (ARGHGEN) 1Nts rats (Mini rats). Congenital Anomalies (discontinued), 2006, 46, 188-193.	0.6	0
46	Longâ€ŧerm Delivery of "Low Dose―Repetitive Intermittent Hypoxia is Not Associated with Detectable Pathology. FASEB Journal, 2018, 32, .	0.5	0