Meta J Kuehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429315/publications.pdf Version: 2024-02-01

METALKUEHN

#	Article	IF	CITATIONS
1	Microbial vesicle-mediated communication: convergence to understand interactions within and between domains of life. Environmental Sciences: Processes and Impacts, 2021, 23, 664-677.	1.7	9
2	Differential Packaging Into Outer Membrane Vesicles Upon Oxidative Stress Reveals a General Mechanism for Cargo Selectivity. Frontiers in Microbiology, 2021, 12, 561863.	1.5	21
3	Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Reports, 2021, 34, 108645.	2.9	39
4	The extracellular vesicle generation paradox: a bacterial point of view. EMBO Journal, 2021, 40, e108174.	3.5	58
5	Outer Membrane Vesiculation Facilitates Surface Exchange and InÂVivo Adaptation of Vibrio cholerae. Cell Host and Microbe, 2020, 27, 225-237.e8.	5.1	73
6	Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Scientific Reports, 2020, 10, 18293.	1.6	50
7	Structure, Function, and Biogenesis of Escherichia coli P Pili. , 2020, , 37-51.		3
8	Dynaminâ€related Irgm proteins modulate LPSâ€induced caspaseâ€11 activation and septic shock. EMBO Reports, 2020, 21, e50830.	2.0	41
9	Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity. MBio, 2019, 10, .	1.8	42
10	Characterizing nucleic acid association with bacterial membrane vesicles and their transfer to host cells. FASEB Journal, 2018, 32, 669.15.	0.2	0
11	Inflammasome Activation by Bacterial Outer Membrane Vesicles Requires Guanylate Binding Proteins. MBio, 2017, 8, .	1.8	122
12	Breaking the bilayer: OMV formation during environmental transitions. Microbial Cell, 2017, 4, 64-66.	1.4	8
13	A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. Journal of Extracellular Vesicles, 2016, 5, 31242.	5.5	142
14	Environmentally controlled bacterial vesicle-mediated export. Cellular Microbiology, 2016, 18, 1525-1536.	1.1	162
15	Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in <i>Salmonella</i> during Environmental Transitions. MBio, 2016, 7, .	1.8	81
16	Genome-Wide Assessment of Outer Membrane Vesicle Production in Escherichia coli. PLoS ONE, 2015, 10, e0139200.	1.1	79
17	Nlplâ€mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in <i>Escherichia coli</i> . MicrobiologyOpen, 2015, 4, 375-389.	1.2	85
18	Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 2015, 13, 605-619.	13.6	1,277

#	Article	IF	CITATIONS
19	Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiology, 2014, 14, 324.	1.3	126
20	Protein selection and export via outer membrane vesicles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1612-1619.	1.9	264
21	Synthetic Effect between Envelope Stress and Lack of Outer Membrane Vesicle Production in Escherichia coli. Journal of Bacteriology, 2013, 195, 4161-4173.	1.0	82
22	Envelope Control of Outer Membrane Vesicle Production in Gram-Negative Bacteria. Biochemistry, 2013, 52, 3031-3040.	1.2	140
23	Quantitative and Qualitative Preparations of Bacterial Outer Membrane Vesicles. Methods in Molecular Biology, 2013, 966, 259-272.	0.4	122
24	Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 131-141.	1.0	80
25	Stress-Induced Outer Membrane Vesicle Production by Pseudomonas aeruginosa. Journal of Bacteriology, 2013, 195, 2971-2981.	1.0	291
26	Offense and defense: microbial membrane vesicles play both ways. Research in Microbiology, 2012, 163, 607-618.	1.0	159
27	Secreted Bacterial Vesicles as Good Samaritans. Cell Host and Microbe, 2012, 12, 392-393.	5.1	7
28	The inoculum effect and bandâ€pass bacterial response to periodic antibiotic treatment. Molecular Systems Biology, 2012, 8, 617.	3.2	84
29	Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiology, 2011, 11, 258.	1.3	488
30	Recognition of β-Strand Motifs by RseB Is Required for σ ^E Activity in Escherichia coli. Journal of Bacteriology, 2011, 193, 6179-6186.	1.0	10
31	Immunization with <i>Salmonella enterica</i> Serovar Typhimurium-Derived Outer Membrane Vesicles Delivering the Pneumococcal Protein PspA Confers Protection against Challenge with <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2011, 79, 887-894.	1.0	121
32	Context-Dependent Activation Kinetics Elicited by Soluble versus Outer Membrane Vesicle-Associated Heat-Labile Enterotoxin. Infection and Immunity, 2011, 79, 3760-3769.	1.0	30
33	Elicitation of Epithelial Cell-Derived Immune Effectors by Outer Membrane Vesicles of Nontypeable Haemophilus influenzae. Infection and Immunity, 2011, 79, 4361-4369.	1.0	111
34	Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 2010, 64, 163-184.	2.9	1,190
35	Heat-Labile Enterotoxin: Beyond G M1 Binding. Toxins, 2010, 2, 1445-1470.	1.5	84
36	Specificity of the Type II Secretion Systems of Enterotoxigenic <i>Escherichia coli</i> and <i>Vibrio cholerae</i> for Heat-Labile Enterotoxin and Cholera Toxin. Journal of Bacteriology, 2010, 192, 1902-1911.	1.0	19

#	Article	IF	CITATIONS
37	Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles. Microbiology and Molecular Biology Reviews, 2010, 74, 81-94.	2.9	782
38	Naturally Produced Outer Membrane Vesicles from <i>Pseudomonas aeruginosa</i> Elicit a Potent Innate Immune Response via Combined Sensing of Both Lipopolysaccharide and Protein Components. Infection and Immunity, 2010, 78, 3822-3831.	1.0	210
39	Residues of Heat-Labile Enterotoxin Involved in Bacterial Cell Surface Binding. Journal of Bacteriology, 2009, 191, 2917-2925.	1.0	19
40	Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiology, 2009, 9, 26.	1.3	94
41	Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Molecular Microbiology, 2007, 63, 545-558.	1.2	589
42	Genetically Engineered Probiotic Competition. Gastroenterology, 2006, 130, 1915-1916.	0.6	4
43	Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes and Infection, 2006, 8, 2400-2408.	1.0	266
44	Outer Membrane Vesicle Production by Escherichia coli Is Independent of Membrane Instability. Journal of Bacteriology, 2006, 188, 5385-5392.	1.0	316
45	Outer Membrane Vesicles. EcoSal Plus, 2005, 1, .	2.1	24
46	Bacterial outer membrane vesicles and the host-pathogen interaction. Genes and Development, 2005, 19, 2645-2655.	2.7	781
47	Lipopolysaccharide 3-Deoxy-d-manno-octulosonic Acid (Kdo) Core Determines Bacterial Association of Secreted Toxins. Journal of Biological Chemistry, 2004, 279, 8070-8075.	1.6	71
48	Incorporation of Heterologous Outer Membrane and Periplasmic Proteins into Escherichia coli Outer Membrane Vesicles. Journal of Biological Chemistry, 2004, 279, 2069-2076.	1.6	184
49	Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO Journal, 2004, 23, 4538-4549.	3.5	318
50	Bacterial Surface Association of Heat-labile Enterotoxin through Lipopolysaccharide after Secretion via the General Secretory Pathway. Journal of Biological Chemistry, 2002, 277, 32538-32545.	1.6	137
51	Polarized secretion. Trends in Microbiology, 2002, 10, 116.	3.5	Ο
52	Surrogate host succumbs to virulent Pseudomonas. Trends in Microbiology, 2002, 10, 215.	3.5	0
53	FRET probes toxin activity in situ. Trends in Microbiology, 2002, 10, 355.	3.5	0
54	Bacterial density dictates virulence in cholera. Trends in Microbiology, 2002, 10, 449.	3.5	0

#	Article	lF	CITATIONS
55	The E. coli BaeSR two-component regulatory system. Trends in Microbiology, 2002, 10, 553.	3.5	Ο
56	Bacterial–host-cell tethers. Trends in Microbiology, 2001, 9, 310.	3.5	0
57	Engineering a biosensor from a bacterial periplasmic protein. Trends in Microbiology, 2001, 9, 527.	3.5	Ο
58	Enterotoxigenic Escherichia coli Secretes Active Heat-labile Enterotoxin via Outer Membrane Vesicles. Journal of Biological Chemistry, 2000, 275, 12489-12496.	1.6	365
59	Definitive typing of LPS core structures. Trends in Microbiology, 2000, 8, 212.	3.5	Ο
60	Bacterial cave dwellers. Trends in Microbiology, 2000, 8, 450-451.	3.5	1
61	Lighting the path to virulence. Trends in Microbiology, 2000, 8, 16.	3.5	Ο
62	Foreign travel. Trends in Microbiology, 1999, 7, 102.	3.5	1
63	Expressed by stress. Trends in Microbiology, 1999, 7, 231.	3.5	Ο
64	A divisive role for lipoproteins. Trends in Microbiology, 1999, 7, 400.	3.5	0
65	COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature, 1998, 391, 187-190.	13.7	374
66	New transporter family. Trends in Microbiology, 1998, 6, 351.	3.5	0
67	Establishing communication via Gram-negative bacterial pili. Trends in Microbiology, 1997, 5, 130-132.	3.5	8
68	Cryptococcus and calcineurin. Trends in Microbiology, 1997, 5, 307.	3.5	5
69	Leaping into the outer membrane. Trends in Microbiology, 1997, 5, 387.	3.5	0
70	COPII and secretory cargo capture into transport vesicles. Current Opinion in Cell Biology, 1997, 9, 477-483.	2.6	122
71	Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro Journal of Cell Biology, 1996, 135, 585-595.	2.3	110
72	Coat Proteins and Selective Protein Packaging into Transport Vesicles. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 11-21.	2.0	12

#	Article	IF	CITATIONS
73	Genetic, biochemical, and structural studies of biogenesis of adhesive pili in bacteria. Methods in Enzymology, 1994, 236, 282-306.	0.4	28
74	Molecular escorts required to present bacterial adhesins to eukaryotic receptors. Developments in Plant Pathology, 1994, , 31-45.	0.1	1
75	A novel secretion apparatus for the assembly of adhesive bacterial pili. Trends in Microbiology, 1993, 1, 50-55.	3.5	36
76	Structural basis of pilus subunit recognition by the PapD chaperone. Science, 1993, 262, 1234-1241.	6.0	228
77	Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria EMBO Journal, 1992, 11, 1617-1622.	3.5	113
78	P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature, 1992, 356, 252-255.	13.7	337
79	Adhesin presentation in bacteria requires molecular chaperones and ushers. Infection and Immunity, 1992, 60, 4445-4451.	1.0	65
80	Fimbriation of Pseudomonas cepacia. Infection and Immunity, 1992, 60, 2002-2007.	1.0	25
81	Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10586-10590.	3.3	133
82	Trimethoprim resistance in <i>Haemophilus influenzae</i> is due to altered dihydrofolate reductase(s). Biochemical Journal, 1991, 274, 657-662.	1.7	22
83	Contribution of a 28-kilodalton membrane protein to the virulence of Haemophilus influenzae. Infection and Immunity, 1991, 59, 600-608.	1.0	32