
Vesna Lojpur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429258/publications.pdf Version: 2024-02-01

VESNALOIDUD

7

#	Article	IF	CITATIONS
1	Structural, morphological, optical, and electronic properties of amorphous non-doped and I and Sn doped Sb2S3 nanoparticles. Materials Science in Semiconductor Processing, 2022, 137, 106196.	1.9	3
2	XPS study of iodine and tin doped Sb2S3 nanostructures affected by non-uniform charging. Applied Surface Science, 2021, 567, 150822.	3.1	10
3	The improved photovoltaic response of commercial monocrystalline Si solar cell under natural and artificial light by using water flow lens (WFL) system. International Journal of Energy Research, 2019, 43, 3507-3515.	2.2	9
4	Numerical and Experimental Analysis of Photovoltaic Cells Under a Water Layer and Natural and Artificial Light. IEEE Journal of Photovoltaics, 2019, 9, 733-740.	1.5	19
5	Influence of Different Light Sources, Light Intensities, and Water Flow Lens (WFL) System on Dye-Sensitized Solar Cell Performances. IEEE Journal of Photovoltaics, 2019, 9, 492-498.	1.5	11
6	Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. Environmental Chemistry Letters, 2018, 16, 659-664.	8.3	11
7	Confirmation of Incorporation of Cu and Se Ions in Applied p- and n-Type-Doped Sb2S3 by Photoemission Spectroscopy. Journal of Electronic Materials, 2018, 47, 2402-2410.	1.0	5
8	Efficient and novel Sb ₂ S ₃ based solar cells with chitosan/poly(ethylene) Tj ETQq0 0 0	rgBT/Ovei 2.2	lock 10 Tf 50
9	The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. Optics and Laser Technology, 2018, 101, 425-432.	2.2	9
10	Effect of Eu3+ - dopant concentration on structural and luminescence properties of SrY2O4 nanocrystalline phosphor and potential application in dye-sensitized solar cells. Science of Sintering, 2018, 50, 347-355.	0.5	4
11	Different behaviors in current–voltage measurements of undoped and doped Sb2S3-based solar cells. Journal of Applied Electrochemistry, 2017, 47, 117-124.	1.5	5

12	The role of low light intensity: A cheap, stable, and solidly efficient amorphous Sb ₂ S ₃ powder/hypericin composite/PVA matrix loaded with electrolyte solar cell. Environmental Progress and Sustainable Energy, 2017, 36, 1507-1516.	1.3	10
13	Non-contact thermometry with Dy3+ doped Gd2Ti2O7 nano-powders. Journal of Luminescence, 2016, 170, 395-400.	1.5	73
14	Luminescence thermometry with Eu3+ doped GdAlO3. Journal of Luminescence, 2016, 170, 467-471.	1.5	59
15	Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles. Journal of Luminescence, 2016, 169, 534-538.	1.5	55
16	Deep-Red Emitting Mn4+ Doped Mg2TiO4 Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 724-730.	1.5	78
17	Sol-Gel Derived Eu ³⁺ -Doped Gd ₂ Ti ₂ O ₇ Pyrochlore Nanopowders. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1,125

18Influence of Er3+/Yb3+ concentration ratio on the down-conversion and up-conversion luminescence
and lifetime in GdVO4:Er3+/Yb3+ microcrystals. Science of Sintering, 2015, 47, 221-228.0.5

VESNA LOJPUR

#	Article	IF	CITATIONS
19	Structural, morphological and up-converting luminescence characteristics of nanocrystalline Y2O3:Yb/Er powders obtained via spray pyrolysis. Ceramics International, 2014, 40, 3089-3095.	2.3	16
20	Strong emission via up-conversion of Gd2O3:Yb3+, Ho3+ nanopowders co-doped with alkali metals ions. Journal of Luminescence, 2014, 145, 466-472.	1.5	36
21	Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors. Journal of Applied Physics, 2014, 115, .	1.1	145
22	Europium-doped nanocrystalline Y2O3â^'La2O3 solid solutions with bixbyite structure. Journal of Physics and Chemistry of Solids, 2014, 75, 1152-1159.	1.9	12
23	Temperature sensing from the emission rise times of Eu ³⁺ in SrY ₂ O ₄ . Physical Chemistry Chemical Physics, 2014, 16, 25636-25641.	1.3	59
24	Yb3+, Er3+ doped Y2O3 nanoparticles of different shapes prepared by self-propagating room temperature reaction method. Ceramics International, 2014, 40, 16033-16039.	2.3	16
25	Effect of processing parameters on structural, morphological and optical Y2O3:Yb3+/Ho3+ powders characteristics. Advanced Powder Technology, 2014, 25, 1449-1454.	2.0	14
26	Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping. Journal of Solid State Chemistry, 2014, 217, 92-98.	1.4	36
27	Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method. Scientific Reports, 2014, 4, 4209.	1.6	200
28	Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. Journal of Alloys and Compounds, 2013, 580, 584-591.	2.8	10
29	Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. Advanced Powder Technology, 2013, 24, 852-857.	2.0	11
30	Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence. Ceramics International, 2013, 39, 1129-1134.	2.3	136
31	Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors. Optical Materials, 2013, 35, 1817-1823.	1.7	24
32	Luminescence thermometry with Zn2SiO4:Mn2+ powder. Applied Physics Letters, 2013, 103, .	1.5	80
33	Annealing and doping concentration effects on Y2O3: Sm3+ nanopowder obtained by self-propagation room temperature reaction. Science of Sintering, 2013, 45, 323-329.	0.5	5
34	Thermographic properties of Eu3+ and Sm3+ doped Lu2O3 nanophosphor. Journal of the Serbian Chemical Society, 2012, 77, 1735-1746.	0.4	25
35	Up-conversion luminescence in Ho3+ and Tm3+ co-doped Y2O3:Yb3+ fine powders obtained through aerosol decomposition. Optical Materials, 2012, 35, 38-44.	1.7	15
36	Synthesis of Ceriumâ€Activated Yttrium Aluminate Based Fine Phosphors by an Aerosol Route. European Journal of Inorganic Chemistry, 2012, 2012, 2716-2724.	1.0	12