
grazyna Kwapiszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7429133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia-Dependent Regulation of Nonphagocytic NADPH Oxidase Subunit NOX4 in the Pulmonary Vasculature. Circulation Research, 2007, 101, 258-267.	2.0	317
2	Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice. Cell, 2011, 147, 293-305.	13.5	293
3	Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell, 2017, 20, 261-273.e3.	5.2	217
4	Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L537-L549.	1.3	212
5	Impact of TASK-1 in Human Pulmonary Artery Smooth Muscle Cells. Circulation Research, 2006, 98, 1072-1080.	2.0	207
6	Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nature Communications, 2019, 10, 2987.	5.8	181
7	Phosphodiesterase 1 Upregulation in Pulmonary Arterial Hypertension. Circulation, 2007, 115, 2331-2339.	1.6	139
8	Dysregulated Bone Morphogenetic Protein Signaling in Monocrotaline-Induced Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1072-1078.	1.1	127
9	Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. European Respiratory Journal, 2013, 41, 85-95.	3.1	104
10	Distinct Differences in Gene Expression Patterns in Pulmonary Arteries of Patients with Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis with Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 98-111.	2.5	101
11	Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension. Respiratory Research, 2005, 6, 109.	1.4	99
12	Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. European Respiratory Journal, 2014, 44, 951-962.	3.1	94
13	The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2018, 51, 1701214.	3.1	91
14	Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L442-L452.	1.3	87
15	Between inflammation and thrombosis: endothelial cells in COVID-19. European Respiratory Journal, 2021, 58, 2100377.	3.1	86
16	Role of Protease-activated Receptor-2 in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1703-1714.	2.5	81
17	Fhl-1, a New Key Protein in Pulmonary Hypertension. Circulation, 2008, 118, 1183-1194.	1.6	79
18	Pirfenidone exerts antifibrotic effects through inhibition of GLI transcription factors. FASEB Journal, 2017, 31, 1916-1928.	0.2	66

#	Article	IF	CITATIONS
19	Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1002-L1013.	1.3	65
20	Perspective: Ambient Air Pollution: Inflammatory Response and Effects on the Lung's Vasculature. Pulmonary Circulation, 2014, 4, 25-35.	0.8	62
21	Targeting TMEM16A to reverse vasoconstriction and remodelling inÂidiopathic pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1800965.	3.1	62
22	PAR-2 Inhibition Reverses Experimental Pulmonary Hypertension. Circulation Research, 2012, 110, 1179-1191.	2.0	61
23	TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. European Respiratory Journal, 2017, 50, 1700754.	3.1	60
24	Dysregulation of the IL-13 Receptor System. A Novel Pathomechanism in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 805-818.	2.5	59
25	Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection. Thrombosis and Haemostasis, 2003, 90, 749-756.	1.8	58
26	Meprin <i>β</i> , a novel mediator of vascular remodelling underlying pulmonary hypertension. Journal of Pathology, 2014, 233, 7-17.	2.1	57
27	Microarray analysis in pulmonary hypertension. European Respiratory Journal, 2016, 48, 229-241.	3.1	54
28	Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. European Respiratory Journal, 2018, 52, 1800564.	3.1	54
29	Highâ€mobility group boxâ€1 induces vascular remodelling processes <i>via</i> câ€Jun activation. Journal of Cellular and Molecular Medicine, 2015, 19, 1151-1161.	1.6	51
30	Receptor for Activated C-Kinase 1, a Novel Interaction Partner of Type II Bone Morphogenetic Protein Receptor, Regulates Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Circulation, 2007, 115, 2957-2968.	1.6	46
31	Peroxisome Proliferator–Activated Receptor–β/Î′, the Acute Signaling Factor in Prostacyclin-Induced Pulmonary Vasodilation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 372-379.	1.4	44
32	Transcription factor Fra-2 and its emerging role in matrix deposition, proliferation and inflammation in chronic lung diseases. Cellular Signalling, 2019, 64, 109408.	1.7	44
33	BDNF/TrkB Signaling Augments Smooth Muscle Cell Proliferation in Pulmonary Hypertension. American Journal of Pathology, 2012, 181, 2018-2029.	1.9	43
34	TGF-β1 Induces Tissue Factor Expression in Human Lung Fibroblasts in a PI3K/JNK/Akt-Dependent and AP-1–Dependent Manner. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 614-627.	1.4	43
35	Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent. International Journal of Biochemistry and Cell Biology, 2014, 54, 137-148.	1.2	41
36	<scp>NPY</scp> / <scp>Y₁</scp> receptorâ€mediated vasoconstrictory and proliferative effects in pulmonary hypertension. British Journal of Pharmacology, 2014, 171, 3895-3907.	2.7	40

#	Article	IF	CITATIONS
37	Long nonâ€coding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of <i>PAXIP1â€AS1</i> . Journal of Pathology, 2019, 247, 357-370.	2.1	40
38	Antihistone Properties of C1 Esterase Inhibitor Protect against Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 186-199.	2.5	39
39	Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biology, 2018, 68-69, 507-521.	1.5	35
40	Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. Journal of Allergy and Clinical Immunology, 2020, 145, 818-833.e11.	1.5	35
41	Altered fibrin clot structure and dysregulated fibrinolysis contribute toÂthrombosis risk in severe COVID-19. Blood Advances, 2022, 6, 1074-1087.	2.5	35
42	Disconnect between Fibrotic Response and Right Ventricular Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1550-1560.	2.5	34
43	Pressure Overload Creates Right Ventricular Diastolic Dysfunction in a Mouse Model: Assessment by Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 828-843.	1.2	33
44	PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L684-L697.	1.3	33
45	Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respiratory Research, 2015, 16, 127.	1.4	32
46	Resident cell lineages are preserved in pulmonary vascular remodeling. Journal of Pathology, 2018, 244, 485-498.	2.1	32
47	Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: A Pathophysiological Approach. Frontiers in Physiology, 2018, 9, 587.	1.3	32
48	Loss of LRP1 promotes acquisition of contractile-myofibroblast phenotype and release of active TGF-β1 from ECM stores. Matrix Biology, 2020, 88, 69-88.	1.5	32
49	Ectodomain shedding of CD99 within highly conserved regions is mediated by the metalloprotease meprin β and promotes transendothelial cell migration. FASEB Journal, 2017, 31, 1226-1237.	0.2	31
50	IL-1 receptor blockade skews inflammation towards Th2 in a mouse model of systemic sclerosis. European Respiratory Journal, 2019, 54, 1900154.	3.1	31
51	Laser-microdissection for cell type- and compartment-specific analyses on genomic and proteomic level. Experimental and Toxicologic Pathology, 2006, 57, 25-29.	2.1	30
52	Fra2 Overexpression in Mice Leads to Non-allergic Asthma Development in an IL-13 Dependent Manner. Frontiers in Immunology, 2018, 9, 2018.	2.2	29
53	Basement Membrane Remodeling Controls Endothelial Function in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 104-117.	1.4	29
54	Identification of proteins in laser-microdissected small cell numbers by SELDI-TOF and Tandem MS. BMC Biotechnology, 2004, 4, 30.	1.7	28

#	Article	IF	CITATIONS
55	Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration. Cell Reports, 2020, 33, 108549.	2.9	28
56	Paxillin Regulates Pulmonary Arterial Smooth Muscle Cell Function in Pulmonary Hypertension. American Journal of Pathology, 2012, 181, 1621-1633.	1.9	27
57	Protease-activated receptors (PAR)-1 and -3 drive epithelial-mesenchymal transition of alveolar epithelial cells – potential role in lung fibrosis. Thrombosis and Haemostasis, 2013, 110, 295-307.	1.8	27
58	Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension?. Cells, 2020, 9, 2029.	1.8	27
59	Systematic Comparison of the T7-IVT and SMART-Based RNA Preamplification Techniques for DNA Microarray Experiments. Clinical Chemistry, 2006, 52, 1161-1167.	1.5	26
60	Docosahexaenoic acid causes rapid pulmonary arterial relaxation <i>via</i> KCa channel-mediated hyperpolarisation in pulmonary hypertension. European Respiratory Journal, 2016, 48, 1127-1136.	3.1	26
61	Pathobiology, pathology and genetics of pulmonary hypertension: Update from the Cologne Consensus Conference 2018. International Journal of Cardiology, 2018, 272, 4-10.	0.8	26
62	Impact of S-Adenosylmethionine Decarboxylase 1 on Pulmonary Vascular Remodeling. Circulation, 2014, 129, 1510-1523.	1.6	23
63	Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension. Basic Research in Cardiology, 2017, 112, 30.	2.5	23
64	Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancerâ€like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulmonary Circulation, 2019, 9, 1-15.	0.8	23
65	TWIST1 Drives Smooth Muscle Cell Proliferation in Pulmonary Hypertension via Loss of GATA-6 and BMPR2. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1283-1296.	2.5	22
66	SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation, 2022, 145, 916-933.	1.6	21
67	LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1604-1616.	1.8	20
68	Machine Learning Analysis of the Bleomycin Mouse Model Reveals the Compartmental and Temporal Inflammatory Pulmonary Fingerprint. IScience, 2020, 23, 101819.	1.9	20
69	Hypoxic vascular response and ventilation/perfusion matching in end-stage COPD may depend on p22phox. European Respiratory Journal, 2017, 50, 1601651.	3.1	19
70	Neurotrophic Tyrosine Kinase Receptor B/Neurotrophin 4 Signaling Axis Is Perturbed in Clinical and Experimental Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 768-780.	1.4	18
71	Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-11 [±] depletion or imatinib treatment. Thrombosis and Haemostasis, 2014, 112, 1288-1303.	1.8	18
72	Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circulation Research, 2019, 125, 356-366.	2.0	18

grazyna Kwapiszewska

#	Article	IF	CITATIONS
73	Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. British Journal of Pharmacology, 2021, 178, 31-53.	2.7	18
74	Novel role of NPY in neuroimmune interaction and lung growth after intrauterine growth restriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L491-L506.	1.3	17
75	FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Research in Cardiology, 2020, 115, 17.	2.5	17
76	Cofilin, a hypoxiaâ€regulated protein in murine lungs identified by 2 <scp>DE</scp> : Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics, 2013, 13, 75-88.	1.3	16
77	CDK4/6 inhibition enhances pulmonary inflammatory infiltration in bleomycin-induced lung fibrosis. Respiratory Research, 2020, 21, 167.	1.4	16
78	The basement membrane in the cross-roads between the lung and kidney. Matrix Biology, 2022, 105, 31-52.	1.5	16
79	Endothelial Dysfunction Following Enhanced TMEM16A Activity in Human Pulmonary Arteries. Cells, 2020, 9, 1984.	1.8	14
80	Dysbalance of <scp>ACE2</scp> levels – a possible cause for severe <scp>COVID</scp> â€19 outcome in <scp>COPD</scp> . Journal of Pathology: Clinical Research, 2021, 7, 446-458.	1.3	13
81	Docking of Meprin α to Heparan Sulphate Protects the Endothelium from Inflammatory Cell Extravasation. Thrombosis and Haemostasis, 2018, 118, 1790-1802.	1.8	12
82	Origin of neomuscularized vessels in mice exposed to chronic hypoxia. Respiratory Physiology and Neurobiology, 2011, 179, 342-345.	0.7	11
83	Amitriptyline and carbamazepine utilize voltage-gated ion channel suppression to impair excitability of sensory dorsal horn neurons in thin tissue slice: An in vitro study. Neuroscience Research, 2016, 109, 16-27.	1.0	9
84	Functional and molecular factors associated with TAPSE in hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L59-L73.	1.3	7
85	Simple method of thawing cryo-stored samples preserves ultrastructural features in electron microscopy. Histochemistry and Cell Biology, 2021, 155, 593-603.	0.8	7
86	Pirfenidone exacerbates Th2-driven vasculopathy in a mouse model of systemic sclerosis-associated interstitial lung disease. European Respiratory Journal, 2022, 60, 2102347.	3.1	7
87	A Twist on Pulmonary Vascular Remodeling: Endothelial to Mesenchymal Transition?. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 140-141.	1.4	6
88	Pulmonary fibrosis in Fra-2 transgenic mice is associated with decreased numbers of alveolar macrophages and increased susceptibility to pneumococcal pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L916-L925.	1.3	5
89	Low oxygen levels decrease adaptive immune responses and ameliorate experimental asthma in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 870-882.	2.7	5
90	Lack of ABCG2 Leads to Biventricular Dysfunction and Remodeling in Response to Hypoxia. Frontiers in Physiology, 2017, 8, 98.	1.3	4

#	Article	IF	CITATIONS
91	TMEM16A Potentiation: Possible Drawbacks. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 904-905.	2.5	4
92	Editorial: Multitasking Biomolecules in Human Pathologies: Known Players on Their Unexpected Journeys. Frontiers in Medicine, 2020, 7, 478.	1.2	2
93	RCS5 Determines Neutrophil Migration in the Acute Inflammatory Phase of Bleomycin-Induced Lung Injury. International Journal of Molecular Sciences, 2021, 22, 9342.	1.8	2
94	Editorial: Molecular Mechanisms in Pulmonary Hypertension and Right Ventricle Dysfunction. Frontiers in Physiology, 2018, 9, 1777.	1.3	1
95	Echocardiographic Measurement of Right Ventricular Diastolic Parameters in Mouse. Journal of Visualized Experiments, 2019, , .	0.2	1
96	Lessons from Transcriptomics in Hypoxia-induced Pulmonary Hypertension: Does the Mouse Strain Matter?. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 13-15.	1.4	1
97	Laser Capture Microdissection of Tissue Sections for High-Throughput RNA Analysis. Methods in Molecular Biology, 2017, 1627, 325-340.	0.4	1
98	Transcriptome profiling reveals the complexity of pirfenidone effects in IPF. , 2019, , .		1
99	Translationally Controlled Tumor Protein in Extracellular Vehicles: Dangerous Cargo?. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 407-409.	1.4	0
100	RFLP analysis of 1-aminocyclopropane-1-carboxylate synthase ACC2 and ACC4 genes from Polish cultivars of tomato Acta Biochimica Polonica, 2002, 49, 1037-1042.	0.3	0