List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7428417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, 2010, 21, 022001.	1.4	483
2	Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensors and Actuators A: Physical, 2010, 158, 284-293.	2.0	165
3	A Flexible 2.45-GHz Power Harvesting Wristband With Net System Output From â^'24.3 dBm of RF Power. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 380-395.	2.9	121
4	A credit card sized self powered smart sensor node. Sensors and Actuators A: Physical, 2011, 169, 317-325.	2.0	73
5	Vibration energy harvesting using the Halbach array. Smart Materials and Structures, 2012, 21, 075020.	1.8	70
6	A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data. Smart Materials and Structures, 2013, 22, 075022.	1.8	57
7	Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays. Sensors and Actuators A: Physical, 2013, 203, 11-19.	2.0	51
8	Novel Miniature Airflow Energy Harvester for Wireless Sensing Applications in Buildings. IEEE Sensors Journal, 2013, 13, 691-700.	2.4	45
9	Energy harvesting study on single and multilayer ferroelectret foams under compressive force. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1360-1368.	1.8	40
10	Kinetic Energy Harvesting. , 2011, , 1-77.		33
11	General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters. Smart Materials and Structures, 2012, 21, 105039.	1.8	33
12	Improving Output Power of Piezoelectric Energy Harvesters using Multilayer Structures. Procedia Engineering, 2011, 25, 199-202.	1.2	31
13	Magnetic tuning of a kinetic energy harvester using variable reluctance. Sensors and Actuators A: Physical, 2013, 189, 266-275.	2.0	30
14	Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester. Sensors and Actuators A: Physical, 2017, 256, 1-11.	2.0	29
15	A tunable kinetic energy harvester with dynamic over range protection. Smart Materials and Structures, 2010, 19, 115005.	1.8	27
16	Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible PZT-polymer composites. Journal of Physics: Conference Series, 2013, 476, 012108.	0.3	24
17	Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration. , 0, , .		22
18	Speed optimisation and reliability analysis of a self-propelled capsule robot moving in an uncertain frictional environment. International Journal of Mechanical Sciences, 2022, 221, 107156.	3.6	18

#	Article	IF	CITATIONS
19	Multilayer ferroelectret-based energy harvesting insole. Journal of Physics: Conference Series, 2015, 660, 012118.	0.3	16
20	A broadband electromagnetic energy harvester with a coupled bistable structure. Journal of Physics: Conference Series, 2013, 476, 012070.	0.3	14
21	Simulation and experimental studies of a vibro-impact capsule system driven by an external magnetic field. Nonlinear Dynamics, 2022, 109, 1501-1516.	2.7	14
22	An investigation of PDMS structures for optimized ferroelectret performance. Journal of Physics: Conference Series, 2014, 557, 012104.	0.3	13
23	Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates. Smart Materials and Structures, 2015, 24, 115030.	1.8	13
24	A 2.45 GHz rectenna screen-printed on polycotton for on-body RF power transfer and harvesting. , 2015, , .		13
25	An electromechanical model of ferroelectret for energy harvesting. Smart Materials and Structures, 2016, 25, 045010.	1.8	11
26	A novel miniature wind generator for wireless sensing applications. , 2010, , .		10
27	Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment. , 2015, , .		9
28	Optimization a structure of MEMS based PDMS ferroelectret for human body energy harvesting and sensing. Smart Materials and Structures, 2019, 28, 075010.	1.8	9
29	An automated design flow for vibration-based energy harvester systems. , 2009, , .		8
30	A miniature airflow energy harvester from piezoelectric materials. Journal of Physics: Conference Series, 2013, 476, 012057.	0.3	8
31	An electromagnetic in-shoe energy harvester using wave springs. , 2018, , .		8
32	Screen printed piezoelectric films for energy harvesting. Advances in Applied Ceramics, 2013, 112, 79-84.	0.6	7
33	A coupled bistable structure for broadband vibration energy harvesting. , 2013, , .		7
34	Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions. Sensors, 2019, 19, 1499.	2.1	7
35	Using the Variable Geometry in a Planar Inductor for an Optimised Performance. Electronics (Switzerland), 2021, 10, 721.	1.8	7
36	Extending Wireless Power Transfer Distance using Electromagnetic Halbach Array. , 2021, , .		7

#	Article	IF	CITATIONS
37	Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing. Journal of Physics: Conference Series, 2014, 557, 012083.	0.3	6
38	Vibration Energy Harvesting: Linear, Nonlinear, and Rotational Approaches. Shock and Vibration, 2019, 2019, 1-2.	0.3	6
39	A Hip Implant Energy Harvester. Journal of Physics: Conference Series, 2014, 557, 012038.	0.3	5
40	Near field wireless power transfer using curved relay resonators for extended transfer distance. Journal of Physics: Conference Series, 2015, 660, 012136.	0.3	5
41	Optimization of a PDMS structure for energy harvesting under compressive forces. Journal of Physics: Conference Series, 2015, 660, 012041.	0.3	5
42	Vibration energy harvesting: fabrication, miniaturisation and applications. Proceedings of SPIE, 2015, , .	0.8	5
43	Design and experimental investigation of a vibro-impact self-propelled capsule robot with orientation control. , 2022, , .		5
44	Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion. Journal of Physics: Conference Series, 2016, 773, 012056.	0.3	4
45	Exploitation of MOSFETâ€based AC switches in capacitive impedance matching networks in inductive wireless power transfer systems. IET Power Electronics, 2020, 13, 713-719.	1.5	4
46	A novel piezoelectric energy harvester designed for single-supply pre-biasing circuit. Journal of Physics: Conference Series, 2013, 476, 012134.	0.3	3
47	PDMS/PVA composite ferroelectret for improved energy harvesting performance. Journal of Physics: Conference Series, 2016, 773, 012051.	0.3	3
48	Performance of Linear Vibration Energy Harvesters under Broadband Vibrations with Multiple Frequency Peaks. Procedia Engineering, 2012, 47, 5-8.	1.2	2
49	Tunable vibration energy harvester. , 2013, , .		2
50	Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester. Journal of Physics: Conference Series, 2013, 476, 012040.	0.3	2
51	Comparisons of Energy Sources for Autonomous In-car Wireless Tags for Asset Tracking and Parking Applications. Procedia Engineering, 2014, 87, 783-786.	1.2	2
52	Screen Printed Free-standing Resonator with Piezoelectric Excitation and Detection on Flexible Substrate. Procedia Engineering, 2014, 87, 947-950.	1.2	2
53	Development of an Automatic Bidirectional Wireless Charging System for Mobile Devices. , 2019, , .		2
54	Comparisons of MOSFET and Relay Switches in Impedance Matching Networks for Wireless Power Transfer. , 2019, , .		2

#	Article	IF	CITATIONS
55	Extending the horizontal transmission range of an inductive wireless power transfer system using passive elliptical resonators. IET Power Electronics, 2021, 14, 2207-2218.	1.5	2
56	Comparisons of Electromagnetic Transducers for Rotational Energy Harvesting. , 2021, , .		2
57	A Miniature Coupled Bistable Vibration Energy Harvester. Journal of Physics: Conference Series, 2014, 557, 012116.	0.3	1
58	Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications. Journal of Physics: Conference Series, 2014, 557, 012044.	0.3	1
59	Development of a low temperature PZT/polymer paste for screen printed flexible electronics applications. , 2014, , .		1
60	Screen-printed free-standing piezoelectric devices using low temperature process. , 2015, , .		1
61	Scaling effects for piezoelectric energy harvesters. Proceedings of SPIE, 2015, , .	0.8	1
62	A miniature piezoelectric energy harvester for air flows. , 2015, , .		1
63	Numerical analysis of an electromagnetic energy harvester driven by multiple magnetic forces under pulse excitation. Smart Materials and Structures, 2018, 27, 115036.	1.8	1
64	Wind Energy Harvesting for Recharging Wireless Sensor Nodes: Brief Review and A Case Study. , 2014, , 1-30.		0
65	Design and optimization of a flapping water flow energy harvester. Journal of Physics: Conference Series, 2018, 1052, 012114.	0.3	0
66	Advance Energy Harvesting Technologies. Energies, 2022, 15, 2366.	1.6	0