Guiye Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7428321/publications.pdf Version: 2024-02-01

CHIVE SHAN

#	Article	IF	CITATIONS
1	Biocompatible BSA-Ag2S nanoparticles for photothermal therapy of cancer. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112295.	5.0	13
2	Photothermal-enhanced peroxidase-like activity of CDs/PBNPs for the detection of Fe3+ and cholesterol in serum samples. Mikrochimica Acta, 2022, 189, 30.	5.0	7
3	Highly dispersive AuNCs/ChOx@ZIF-8/PEI nanocomplexes for fluorescent detection of cholesterol in human serum. Mikrochimica Acta, 2022, 189, 203.	5.0	7
4	ZIF-67-derived Co3O4 hollow nanocage with efficient peroxidase mimicking characteristic for sensitive colorimetric biosensing of dopamine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119006.	3.9	33
5	Photothermal enhanced photocatalytic activity based on Ag-doped CuS nanocomposites. Journal of Alloys and Compounds, 2021, 864, 158591.	5.5	39
6	Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sensors and Actuators B: Chemical, 2020, 305, 127420.	7.8	32
7	Amorphous Ag2-xCuxS quantum dots: "all-in-one―theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy. Chemical Engineering Journal, 2020, 399, 125777.	12.7	19
8	Bidirectional Photochromism via Anchoring of Carbon Dots to TiO ₂ Porous Films. ACS Applied Materials & Interfaces, 2020, 12, 6262-6267.	8.0	13
9	Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed silica microspheres. Scientific Reports, 2020, 10, 5710.	3.3	9
10	Carbon dots with molecular fluorescence and their application as a "turn-off―fluorescent probe for ferricyanide detection. Scientific Reports, 2019, 9, 10723.	3.3	53
11	A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Mikrochimica Acta, 2019, 186, 644.	5.0	50
12	Colorimetric and Raman spectroscopic array for detection of hydrogen peroxide and glucose based on etching the silver shell of Au@Ag core-shell nanoparticles. Mikrochimica Acta, 2019, 186, 802.	5.0	19
13	Apoferritin nanocages with Au nanoshell coating as drug carrier for multistimuli-responsive drug release. Materials Science and Engineering C, 2019, 95, 11-18.	7.3	17
14	Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta, 2018, 182, 314-323.	5.5	33
15	First-principles study of electronic properties of Cu doped Ag ₂ S. Journal of Physics Condensed Matter, 2018, 30, 425502.	1.8	10
16	Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of H2O2. Mikrochimica Acta, 2018, 185, 445.	5.0	23
17	The detection of copper ions based on photothermal effect of cysteine modified Au nanorods. Sensors and Actuators B: Chemical, 2017, 248, 761-768.	7.8	20
18	SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release. Colloids and Surfaces B: Biointerfaces, 2017, 154, 150-159.	5.0	19

#	Article	IF	CITATIONS
19	Detection of label-free H2O2 based on sensitive Au nanorods as sensor. Colloids and Surfaces B: Biointerfaces, 2013, 102, 327-330.	5.0	28
20	Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. Colloids and Surfaces B: Biointerfaces, 2012, 94, 157-162.	5.0	48