
## Masayuki Amano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7428217/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and<br>Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1<br>Protease Inhibitors <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0171521.                                 | 1.4 | 5         |
| 2  | Design, Synthesis and Xâ€Ray Structural Studies of Potent HIVâ€1 Protease Inhibitors Containing Câ€4<br>Substituted Tricyclic Hexahydroâ€Furofuran Derivatives as P2 Ligands. ChemMedChem, 2022, 17, .                                                                                                                                             | 1.6 | 2         |
| 3  | Third-Dose BNT162b2 Vaccination Elicits Markedly High-Level SARS-CoV-2–Neutralizing Antibodies in<br>Vaccinees Who Responded Poorly to a Second Dose in Japan. Journal of Infectious Diseases, 2022, 226,<br>2038-2039.                                                                                                                            | 1.9 | 7         |
| 4  | Human retroviral antisense mRNAs are retained in the nuclei of infected cells for viral persistence.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                                                                                              | 3.3 | 23        |
| 5  | A Small Molecule, ACAi-028, with Anti-HIV-1 Activity Targets a Novel Hydrophobic Pocket on HIV-1<br>Capsid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0103921.                                                                                                                                                                             | 1.4 | 11        |
| 6  | Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Scientific Reports, 2021, 11, 22848.                                                                                                                                                               | 1.6 | 57        |
| 7  | Synthesis and evaluation of the anti-hepatitis B virus activity of 4′-Azido-thymidine analogs and<br>4′-Azido-2′-deoxy-5-methylcytidine analogs: structural insights for the development of a novel anti-HBV<br>agent. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 518-529.                                                              | 0.4 | 2         |
| 8  | A Conformational Escape Reaction of HIV-1 against an Allosteric Integrase Inhibitor. Journal of<br>Virology, 2020, 94, .                                                                                                                                                                                                                           | 1.5 | 7         |
| 9  | Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring<br>P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. Journal of Medicinal Chemistry,<br>2020, 63, 4867-4879.                                                                                                                | 2.9 | 19        |
| 10 | Novel p97/ <scp>VCP</scp> inhibitor induces endoplasmic reticulum stress and apoptosis in both<br>bortezomibâ€sensitive and â€resistant multiple myeloma cells. Cancer Science, 2019, 110, 3275-3287.                                                                                                                                              | 1.7 | 23        |
| 11 | Amino-acid inserts of HIV-1 capsid (CA) induce CA degradation and abrogate viral infectivity: Insights for the dynamics and mechanisms of HIV-1 CA decomposition. Scientific Reports, 2019, 9, 9806.                                                                                                                                               | 1.6 | 5         |
| 12 | Novel Central Nervous System (CNS)-Targeting Protease Inhibitors for Drug-Resistant HIV Infection and HIV-Associated CNS Complications. Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                                                                                                         | 1.4 | 9         |
| 13 | Novel Protease Inhibitors Containing C-5-Modified <i>bis</i> -Tetrahydrofuranylurethane and<br>Aminobenzothiazole as P2 and P2′ Ligands That Exert Potent Antiviral Activity against Highly<br>Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance.<br>Antimicrobial Agents and Chemotherapy, 2019, 63. | 1.4 | 11        |
| 14 | Synthesis of 4′â€Substituted Purine 2′â€Deoxynucleosides and Their Activity against Human<br>Immunodeficiency Virus Type 1 and Hepatitis B Virus. ChemistrySelect, 2018, 3, 3313-3317.                                                                                                                                                             | 0.7 | 6         |
| 15 | Synthesis, Anti-HBV, and Anti-HIV Activities of 3′-Halogenated<br>Bis(hydroxymethyl)-cyclopentenyladenines. ACS Medicinal Chemistry Letters, 2018, 9, 1211-1216.                                                                                                                                                                                   | 1.3 | 7         |
| 16 | Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring<br>Systems as Novel P2 Ligands: Structure–Activity Studies, Biological and X-ray Structural Analysis.<br>Journal of Medicinal Chemistry, 2018, 61, 4561-4577.                                                                                      | 2.9 | 31        |
| 17 | Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands:<br>Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex.<br>Bioorganic and Medicinal Chemistry, 2017, 25, 5114-5127.                                                                                    | 1.4 | 16        |
| 18 | A novel entecavir analogue constructing with a spiro[2.4]heptane core structure in the aglycon<br>moiety: Its synthesis and evaluation for anti-hepatitis B virus activity. Nucleosides, Nucleotides and<br>Nucleic Acids, 2017, 36, 463-473.                                                                                                      | 0.4 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor,<br>Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro.<br>Scientific Reports, 2017, 7, 12235.                                                                            | 1.6 | 16        |
| 20 | Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease<br>inhibitors involving the P1′-P2′ ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4925-4931.                                                                                                       | 1.0 | 7         |
| 21 | Design, Synthesis, Biological Evaluation, and Xâ€ray Studies of HIVâ€1 Protease Inhibitors with Modified P2′<br>Ligands of Darunavir. ChemMedChem, 2017, 12, 1942-1952.                                                                                                                                             | 1.6 | 8         |
| 22 | A Modified P1 Moiety Enhances <i>In Vitro</i> Antiviral Activity against Various Multidrug-Resistant<br>HIV-1 Variants and <i>In Vitro</i> Central Nervous System Penetration Properties of a Novel<br>Nonpeptidic Protease Inhibitor, GRL-10413. Antimicrobial Agents and Chemotherapy, 2016, 60, 7046-7059.       | 1.4 | 14        |
| 23 | Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells. Biochemical and Biophysical Research Communications, 2016, 469, 236-242.                                                                                                                         | 1.0 | 10        |
| 24 | Diastereoselective Synthesis of 6″-( <i>Z</i> )- and 6″-( <i>E</i> )-Fluoro Analogues of Anti-hepatitis B Virus<br>Agent Entecavir and Its Evaluation of the Activity and Toxicity Profile of the Diastereomers. Journal of<br>Organic Chemistry, 2016, 81, 2827-2836.                                              | 1.7 | 12        |
| 25 | 4′â€modified nucleoside analogs: Potent inhibitors active against entecavirâ€resistant hepatitis B virus.<br>Hepatology, 2015, 62, 1024-1036.                                                                                                                                                                       | 3.6 | 43        |
| 26 | A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits<br>the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System<br>Penetration Property <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2015, 59, 2625-2635.  | 1.4 | 10        |
| 27 | Structure-based design, synthesis, X-ray studies, and biological evaluation of novel HIV-1 protease<br>inhibitors containing isophthalamide-derived P2-ligands. Bioorganic and Medicinal Chemistry Letters,<br>2015, 25, 4903-4909.                                                                                 | 1.0 | 26        |
| 28 | Structure-Based Design of Potent HIV-1 Protease Inhibitors with Modified P1-Biphenyl Ligands:<br>Synthesis, Biological Evaluation, and Enzyme–Inhibitor X-ray Structural Studies. Journal of Medicinal<br>Chemistry, 2015, 58, 5334-5343.                                                                           | 2.9 | 21        |
| 29 | Design, Synthesis, and Evaluation of Anti-HBV Activity of Hybrid Molecules of Entecavir and Adefovir:<br>Exomethylene Acycloguanine Nucleosides and Their Monophosphate Derivatives. Nucleosides,<br>Nucleotides and Nucleic Acids, 2015, 34, 590-602.                                                              | 0.4 | 4         |
| 30 | Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors<br>containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands. Organic and<br>Biomolecular Chemistry, 2015, 13, 11607-11621.                                                                   | 1.5 | 10        |
| 31 | Design of <i>gem</i> â€Difluoroâ€ <i>bis</i> â€Tetrahydrofuran as P2 Ligand for HIVâ€1â€Protease Inhibitors to<br>Improve Brain Penetration: Synthesis, Xâ€ray Studies, and Biological Evaluation. ChemMedChem, 2015, 10,<br>107-115.                                                                               | 1.6 | 20        |
| 32 | Design and synthesis of potent macrocyclic HIV-1 protease inhibitors involving P1–P2 ligands. Organic and Biomolecular Chemistry, 2014, 12, 6842-6854.                                                                                                                                                              | 1.5 | 20        |
| 33 | Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and<br>Protein–Ligand X-ray Studies. Journal of Medicinal Chemistry, 2013, 56, 6792-6802.                                                                                                                               | 2.9 | 42        |
| 34 | Comparative analysis of ER stress response into HIV protease inhibitors: Lopinavir but not darunavir<br>induces potent ER stress response via ROS/JNK pathway. Free Radical Biology and Medicine, 2013, 65,<br>778-788.                                                                                             | 1.3 | 32        |
| 35 | GRL-04810 and GRL-05010, Difluoride-Containing Nonpeptidic HIV-1 Protease Inhibitors (PIs) That Inhibit the Replication of Multi-PI-Resistant HIV-1 <i>In Vitro</i> and Possess Favorable Lipophilicity That May Allow Blood-Brain Barrier Penetration. Antimicrobial Agents and Chemotherapy, 2013, 57, 6110-6121. | 1.4 | 21        |
| 36 | GRL-0519, a Novel Oxatricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor (PI), Potently<br>Suppresses Replication of a Wide Spectrum of Multi-PI-Resistant HIV-1 Variants <i>In Vitro</i> .<br>Antimicrobial Agents and Chemotherapy, 2013, 57, 2036-2046.                                             | 1.4 | 24        |

Masayuki Amano

| #  | Article                                                                                                                                                                                                                                                                          | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 37 | Loss of the Protease Dimerization Inhibition Activity of Tipranavir (TPV) and Its Association with the Acquisition of Resistance to TPV by HIV-1. Journal of Virology, 2012, 86, 13384-13396.                                                                                    | 1.5               | 26                 |
| 38 | Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes: Design, synthesis, and X-ray<br>studies of potent HIV-1 protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22,<br>2308-2311.                                                               | 1.0               | 17                 |
| 39 | Design and Synthesis of Potent HIV-1 Protease Inhibitors Incorporating Hexahydrofuropyranol-Derived<br>High Affinity P <sub>2</sub> Ligands: Structureâ^Activity Studies and Biological Evaluation. Journal of<br>Medicinal Chemistry, 2011, 54, 622-634.                        | 2.9               | 69                 |
| 40 | Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as<br>P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure. Journal of<br>Medicinal Chemistry, 2011, 54, 5890-5901.                             | 2.9               | 31                 |
| 41 | Design, Synthesis, and X-ray Structure of Substituted Bis-tetrahydrofuran (Bis-THF)-Derived Potent<br>HIV-1 Protease Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 298-302.                                                                                              | 1.3               | 26                 |
| 42 | Novel HIV-1 Protease Inhibitors (PIs) Containing a Bicyclic P2 Functional Moiety,<br>Tetrahydropyrano-Tetrahydrofuran, That Are Potent against Multi-PI-Resistant HIV-1 Variants.<br>Antimicrobial Agents and Chemotherapy, 2011, 55, 1717-1727.                                 | 1.4               | 25                 |
| 43 | Loss of Protease Dimerization Inhibition Activity of Darunavir Is Associated with the Acquisition of Resistance to Darunavir by HIV-1. Journal of Virology, 2011, 85, 10079-10089.                                                                                               | 1.5               | 40                 |
| 44 | Probing Multidrugâ€Resistance and Protein–Ligand Interactions with Oxatricyclic Designed Ligands in<br>HIVâ€1 Protease Inhibitors. ChemMedChem, 2010, 5, 1850-1854.                                                                                                              | 1.6               | 47                 |
| 45 | Synthesis and biological evaluation of novel allophenylnorstatine-based HIV-1 protease inhibitors incorporating high affinity P2-ligands. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1241-1246.                                                                       | 1.0               | 14                 |
| 46 | Novel Protease Inhibitors (PIs) Containing Macrocyclic Components and 3( <i>R</i> ),3a( <i>S</i> ),6a() Tj ETQq<br>Variants <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3460-3470.                                                                        | 0 0 0 rgBT<br>1.4 | /Overlock 10<br>21 |
| 47 | <i>In Vitro</i> Selection of Highly Darunavir-Resistant and Replication-Competent HIV-1 Variants by<br>Using a Mixture of Clinical HIV-1 Isolates Resistant to Multiple Conventional Protease Inhibitors.<br>Journal of Virology, 2010, 84, 11961-11969.                         | 1.5               | 85                 |
| 48 | GRL-02031, a Novel Nonpeptidic Protease Inhibitor (PI) Containing a Stereochemically Defined Fused<br>Cyclopentanyltetrahydrofuran Potent against Multi-PI-Resistant Human Immunodeficiency Virus Type 1<br>In Vitro. Antimicrobial Agents and Chemotherapy, 2009, 53, 997-1006. | 1.4               | 38                 |
| 49 | Design, Synthesis, Proteinâ^'Ligand X-ray Structure, and Biological Evaluation of a Series of Novel<br>Macrocyclic Human Immunodeficiency Virus-1 Protease Inhibitors to Combat Drug Resistance. Journal<br>of Medicinal Chemistry, 2009, 52, 7689-7705.                         | 2.9               | 40                 |
| 50 | Activity against Human Immunodeficiency Virus Type 1, Intracellular Metabolism, and Effects on Human<br>DNA Polymerases of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine. Antimicrobial Agents and Chemotherapy,<br>2007, 51, 2701-2708.                                                 | 1.4               | 96                 |
| 51 | A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is<br>Potent against Multiple-PI-Resistant Human Immunodeficiency Virus In Vitro. Antimicrobial Agents and<br>Chemotherapy, 2007, 51, 2143-2155.                                | 1.4               | 66                 |
| 52 | Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease<br>Dimerization. Journal of Biological Chemistry, 2007, 282, 28709-28720.                                                                                                     | 1.6               | 137                |
| 53 | Correlates of Neutralizing/SARS-CoV-2-S1-Binding Antibody Response With Adverse Effects and Immune Kinetics in BNT162b2-Vaccinated Individuals. SSRN Electronic Journal, 0, , .                                                                                                  | 0.4               | 0                  |