Olivia Osborn

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7428138/olivia-osborn-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 19 3,142 29 h-index g-index citations papers 3,642 29 15.3 5.35 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
28	Conserved immunomodulatory transcriptional networks underlie antipsychotic-induced weight gain. <i>Translational Psychiatry</i> , 2021 , 11, 405	8.6	O
27	Obesity-induced changes in lipid mediators persist after weight loss. <i>International Journal of Obesity</i> , 2018 , 42, 728-736	5.5	18
26	Cysteine- and glycine-rich protein 3 regulates glucose homeostasis in skeletal muscle. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2018 , 315, E267-E278	6	4
25	RalA controls glucose homeostasis by regulating glucose uptake in brown fat. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7819-7824	11.5	26
24	Distinct gene signatures predict insulin resistance in young mice with high fat diet-induced obesity. <i>Physiological Genomics</i> , 2018 , 50, 144-157	3.6	7
23	Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice. <i>Nutrition Research</i> , 2017 , 46, 11-21	4	29
22	Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. Journal of Clinical Investigation, 2017 , 127, 1019-1030	15.9	73
21	Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. <i>Cell</i> , 2016 , 167, 973-	·9 8 64.2e1	2 149
20	The role of dietary fat in obesity-induced insulin resistance. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2016 , 311, E989-E997	6	12
19	Distinct Hepatic Macrophage Populations in Lean and Obese Mice. <i>Frontiers in Endocrinology</i> , 2016 , 7, 152	5.7	10
18	LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. <i>Nature Medicine</i> , 2015 , 21, 239-247	50.5	189
17	Adipocyte SIRT1 knockout promotes PPAR activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. <i>Molecular Metabolism</i> , 2015 , 4, 378-91	8.8	102
16	Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. <i>Diabetes</i> , 2015 , 64, 1120-30	0.9	103
15	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. <i>Nature Medicine</i> , 2015 , 21, 159-65	50.5	420
14	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. <i>Nature</i> , 2014 , 513, 436-9	50.4	150
13	Knock-down of IL-1Ra in obese mice decreases liver inflammation and improves insulin sensitivity. <i>PLoS ONE</i> , 2014 , 9, e107487	3.7	18
12	Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. <i>Journal of Biological Chemistry</i> , 2013 , 288, 10722-35	5.4	48

LIST OF PUBLICATIONS

11	Medicine, 2012 , 18, 363-74	50.5	1084
10	G protein-coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. <i>Journal of Clinical Investigation</i> , 2012 , 122, 2444-53	15.9	41
9	Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue. <i>Cytokine</i> , 2011 , 53, 311-9	4	9
8	Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. <i>Trends in Pharmacological Sciences</i> , 2011 , 32, 543-50	13.2	194
7	Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. <i>Journal of Biological Chemistry</i> , 2011 , 286, 14983-90	5.4	30
6	Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. <i>Journal of Clinical Investigation</i> , 2011 , 121, 4281-8	15.9	145
5	Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. <i>Diabetes</i> , 2010 , 59, 43-50	0.9	68
4	Fat-induced inflammation unchecked. <i>Cell Metabolism</i> , 2010 , 12, 553-4	24.6	12
3	Metabolic characterization of a mouse deficient in all known leptin receptor isoforms. <i>Cellular and Molecular Neurobiology</i> , 2010 , 30, 23-33	4.6	19
2	Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. <i>Cytokine</i> , 2008 , 44, 141-8	4	111
1	A locus for autosomal dominant "pure" hereditary spastic paraplegia maps to chromosome 19q13. American Journal of Human Genetics, 2000 , 66, 728-32	11	70