Hongyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7427843/publications.pdf

Version: 2024-02-01

623734 752698 20 953 14 20 citations g-index h-index papers 20 20 20 1415 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. Journal of Materials Chemistry A, 2013, 1, 3739.	10.3	236
2	In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. Journal of Alloys and Compounds, 2017, 714, 522-529.	5.5	102
3	Graphene Oxide Reinforced Alginate/PVA Double Network Hydrogels for Efficient Dye Removal. Polymers, 2018, 10, 835.	4.5	81
4	Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydrate Polymers, 2018, 182, 52-60.	10.2	75
5	Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. Chemosphere, 2021, 263, 128240.	8.2	62
6	Partly reduced graphene oxide aerogels induced by proanthocyanidins for efficient dye removal. Bioresource Technology, 2019, 282, 148-155.	9.6	54
7	Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film. Polymer Testing, 2016, 50, 49-56.	4.8	52
8	Fire property and charring behavior of high impact polystyrene containing expandable graphite and microencapsulated red phosphorus. Polymer Degradation and Stability, 2015, 121, 261-270.	5.8	47
9	High-Strength Chitin Based Hydrogels Reinforced by Tannic Acid Functionalized Graphene for Congo Red Adsorption. Journal of Polymers and the Environment, 2020, 28, 984-994.	5.0	47
10	Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application. Composites Part B: Engineering, 2017, 114, 339-347.	12.0	40
11	Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties. Journal of Materials Science, 2017, 52, 11715-11724.	3.7	38
12	One-step reduction and PElylation of PEGylated nanographene oxide for highly efficient chemo-photothermal therapy. Journal of Materials Chemistry B, 2016, 4, 2972-2983.	5.8	31
13	Differently-charged graphene-based multilayer films by a layer-by-layer approach for oxygen gas barrier application. Composites Part B: Engineering, 2018, 155, 391-396.	12.0	29
14	The Adaptive Tribological Investigation of Polycaprolactam/Graphene Nanocomposites. Tribology Letters, 2017, 65, 1.	2.6	17
15	One-step synthesis of reduced graphene oxide supported CoW nanoparticles as efficient catalysts for hydrogen generation from NH3BH3. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 171-181.	1.7	13
16	Thermal conduction and fire property of glass fiber-reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polymer Degradation and Stability, 2016, 129, 180-191.	5.8	12
17	Surface tailored Ru catalyst on magadiite for efficient hydrogen generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127627.	4.7	6
18	Catalytic Activity and Stability of Magadiite-Immobilized Myoglobin in Organic Solvents. Chinese Journal of Catalysis, 2008, 29, 458-462.	14.0	5

Hongyu Liu

#	Article	IF	CITATION
19	Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH ₃ BH ₃ . Zeitschrift Fur Physikalische Chemie, 2020, 234, 1645-1659.	2.8	5
20	Broadband downconversion in Bi3+-Yb3+-codoped transparent glass ceramics containing LaF3 nanocrystals. Journal of Materials Science: Materials in Electronics, 2020, 31, 5117-5123.	2.2	1