Zi-Bing Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7427621/publications.pdf

Version: 2024-02-01

154 papers	4,895 citations	126708 33 h-index	61 g-index
165	165	165	6508
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. Journal of Cell Science, 2009, 122, 3169-3179.	1.2	393
2	Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e17084.	1.1	204
3	Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Scientific Reports, 2014, 4, 5405.	1.6	187
4	Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Reports, 2018, 10, 1267-1281.	2.3	183
5	Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4189-4194.	3.3	181
6	Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genetics in Medicine, 2015, 17, 271-278.	1.1	177
7	Stemming retinal regeneration with pluripotent stem cells. Progress in Retinal and Eye Research, 2019, 69, 38-56.	7.3	148
8	Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 2019, 22, 1345-1356.	7.1	144
9	A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials, 2014, 35, 9777-9788.	5.7	117
10	Bioenergetic Crosstalk between Mesenchymal Stem Cells and various Ocular Cells through the intercellular trafficking of Mitochondria. Theranostics, 2020, 10, 7260-7272.	4.6	99
11	Integration-Free Induced Pluripotent Stem Cells Derived from Retinitis Pigmentosa Patient for Disease Modeling. Stem Cells Translational Medicine, 2012, 1, 503-509.	1.6	93
12	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	5.8	93
13	COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Research and Therapy, 2020, 11, 366.	2.4	92
14	SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nature Communications, 2014, 5, 3517.	5.8	82
15	An overview of myopia genetics. Experimental Eye Research, 2019, 188, 107778.	1.2	79
16	Targeted deletion of miR-182, an abundant retinal microRNA. Molecular Vision, 2009, 15, 523-33.	1.1	78
17	Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4219-4224.	3.3	77
18	Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33628-33638.	3.3	74

#	Article	IF	Citations
19	miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6376-6381.	3.3	73
20	Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. Journal of Medical Genetics, 2008, 45, 465-472.	1.5	67
21	Patient-Specific Retinal Organoids Recapitulate Disease Features of Late-Onset Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology, 2020, 8, 128.	1.8	66
22	Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Mýller cells. Experimental Neurology, 2012, 238, 192-208.	2.0	65
23	Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. Journal of Genetics, 2009, 88, 417-424.	0.4	59
24	Targeted Exome Sequencing Identified Novel USH2A Mutations in Usher Syndrome Families. PLoS ONE, 2013, 8, e63832.	1.1	58
25	Mutations in <i>LRP5</i> , <i>FZD4</i> , <i>TSPAN12</i> , <i>NDP</i> , <i>ZNF408</i> , or <i>KIF11 </i> Genes Account for 38.7% of Chinese Patients With Familial Exudative Vitreoretinopathy., 2017, 58, 2623.		58
26	Disease Activity-Associated Alteration of mRNA m5 C Methylation in CD4+ T Cells of Systemic Lupus Erythematosus. Frontiers in Cell and Developmental Biology, 2020, 8, 430.	1.8	55
27	Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing. Genetics in Medicine, 2015, 17, 307-311.	1.1	52
28	miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. Cell Reports, 2016, 16, 757-768.	2.9	51
29	Polygenic Risk Scores have high diagnostic capacity in ankylosing spondylitis. Annals of the Rheumatic Diseases, 2021, 80, 1168-1174.	0.5	49
30	'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau047-bau047.	1.4	46
31	Genomewide Association Study of Acute Anterior Uveitis Identifies New Susceptibility Loci., 2020, 61, 3.		43
32	Comprehensive Molecular Diagnosis of Bardet-Biedl Syndrome by High-Throughput Targeted Exome Sequencing. PLoS ONE, 2014, 9, e90599.	1.1	42
33	Molecular Diagnosis of Putative Stargardt Disease by Capture Next Generation Sequencing. PLoS ONE, 2014, 9, e95528.	1.1	38
34	Clinical and Molecular Findings in Three Japanese Patients with Crystalline Retinopathy. Japanese Journal of Ophthalmology, 2006, 50, 426-431.	0.9	36
35	Identification of <i>de novo</i> germline mutations and causal genes for sporadic diseases using trioâ€based wholeâ€exome/genome sequencing. Biological Reviews, 2018, 93, 1014-1031.	4.7	35
36	Macular Hole Formation in Patients With Retinitis Pigmentosa and Prognosis of Pars Plana Vitrectomy. Retina, 2008, 28, 610-614.	1.0	34

#	Article	IF	Citations
37	VEGF-Mediated Proliferation of Human Adipose Tissue-Derived Stem Cells. PLoS ONE, 2013, 8, e73673.	1.1	33
38	mirDNMR: a gene-centered database of background <i>de novo</i> mutation rates in human. Nucleic Acids Research, 2017, 45, D796-D803.	6.5	33
39	miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
40	Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations. Molecular Vision, 2006, 12, 1167-74.	1.1	31
41	Generation of retinal cells from pluripotent stem cells. Progress in Brain Research, 2012, 201, 171-181.	0.9	30
42	Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts. Scientific Reports, 2014, 4, 4121.	1.6	30
43	Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. National Science Review, 2019, 6, 1201-1222.	4.6	30
44	Geographic Difference Shaped Human Ocular Surface Metagenome of Young Han Chinese From Beijing, Wenzhou, and Guangzhou Cities., 2020, 61, 47.		29
45	A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration. PLoS ONE, 2016, 11, e0149663.	1.1	27
46	Lysosomal storage disease in the brain: mutations of the \hat{l}^2 -mannosidase gene identified in autosomal dominant nystagmus. Genetics in Medicine, 2015, 17, 971-979.	1.1	26
47	Circular RNAs in human and vertebrate neural retinas. RNA Biology, 2019, 16, 821-829.	1.5	26
48	Deletion of miR-182 Leads to Retinal Dysfunction in Mice. , 2019, 60, 1265.		26
49	Genome-Wide Detection of Copy Number Variations in Unsolved Inherited Retinal Disease., 2017, 58, 424.		25
50	Somatic and gonadal mosaicism in X-linked retinitis pigmentosa. American Journal of Medical Genetics, Part A, 2007, 143A, 2544-2548.	0.7	24
51	Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients., 2019, 60, 4052.		24
52	The Circular RNome of Developmental Retina in Mice. Molecular Therapy - Nucleic Acids, 2020, 19, 339-349.	2.3	24
53	Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. European Journal of Human Genetics, 2017, 25, 461-471.	1.4	23
54	REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Human Molecular Genetics, 2017, 26, 2218-2230.	1.4	23

#	Article	lF	CITATIONS
55	Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Medicine, 2017, 9, 97.	3.6	23
56	Detection of localized retinal malfunction in retinal degeneration model using a multielectrode array system. Journal of Neuroscience Research, 2009, 87, 2175-2182.	1.3	22
57	<i>USH2A</i> variants in Chinese patients with Usher syndrome type II and non-syndromic retinitis pigmentosa. British Journal of Ophthalmology, 2021, 105, 694-703.	2.1	22
58	Mutational screening of SLC39A5, LEPREL1 and LRPAP1 in a cohort of 187 high myopia patients. Scientific Reports, 2017, 7, 1120.	1.6	21
59	Mutation of IPO13 causes recessive ocular coloboma, microphthalmia, and cataract. Experimental and Molecular Medicine, 2018, 50, 1-11.	3.2	21
60	Emerging roles of nonâ€coding RNAs in retinal diseases: A review. Clinical and Experimental Ophthalmology, 2020, 48, 1085-1101.	1.3	21
61	The road to restore vision with photoreceptor regeneration. Experimental Eye Research, 2021, 202, 108283.	1.2	21
62	Circular RNAs in the Central Nervous System. Frontiers in Molecular Biosciences, 2021, 8, 629593.	1.6	21
63	Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9. Scientific Reports, 2017, 7, 43062.	1.6	20
64	Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 2020, 108, 967-981.	1.5	19
65	Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Science Advances, 2021, 7, .	4.7	19
66	Retinal organoids as models for development and diseases. Cell Regeneration, 2021, 10, 33.	1.1	19
67	The Impact of Study-at-Home During the COVID-19 Pandemic on Myopia Progression in Chinese Children. Frontiers in Public Health, 2021, 9, 720514.	1.3	19
68	Loss of miRâ€182 affects Bâ€cell extrafollicular antibody response. Immunology, 2016, 148, 140-149.	2.0	18
69	Functional characterization of <i>CEP250</i> variant identified in nonsyndromic retinitis pigmentosa. Human Mutation, 2019, 40, 1039-1045.	1.1	18
70	Eyes on coronavirus. Stem Cell Research, 2021, 51, 102200.	0.3	18
71	Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish. Frontiers in Cell and Developmental Biology, 2018, 6, 75.	1.8	17
72	Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Annals of Translational Medicine, 2021, 9, 245-245.	0.7	17

#	Article	IF	CITATIONS
73	Use of Lectins to Enrich Mouse ES-Derived Retinal Progenitor Cells for the Purpose of Transplantation Therapy. Cell Transplantation, 2010, 19, 9-19.	1.2	16
74	Generation of Nonhuman Primate Model of Cone Dysfunction through In Situ AAV-Mediated CNGB3 Ablation. Molecular Therapy - Methods and Clinical Development, 2020, 18, 869-879.	1.8	16
75	Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. , 2020, 61, 12.		16
76	Functional microglia derived from human pluripotent stem cells empower retinal organs. Science China Life Sciences, 2022, 65, 1057-1071.	2.3	16
77	CFI-rs7356506 is a genetic protective factor for acute anterior uveitis in Chinese patients. British Journal of Ophthalmology, 2014, 98, 1592-1596.	2.1	15
78	Mutation spectrum and genotypeâ€phenotype correlation of inherited retinal dystrophy in Taiwan. Clinical and Experimental Ophthalmology, 2020, 48, 486-499.	1.3	15
79	Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules, 2021, 11, 987.	1.8	15
80	Identification of Three Novel Mutations in the FRMD7 Gene for X-linked Idiopathic Congenital Nystagmus. Scientific Reports, 2014, 4, 3745.	1.6	14
81	Trinucleotide expansions in the SCA7 gene in a large family with spinocerebellar ataxia and craniocervical dystonia. Neuroscience Letters, 2008, 434, 230-233.	1.0	13
82	Slc7a14 Is Indispensable in Zebrafish Retinas. Frontiers in Cell and Developmental Biology, 2019, 7, 333.	1.8	13
83	Towards stem cell-based neuronal regeneration for glaucoma. Progress in Brain Research, 2020, 257, 99-118.	0.9	13
84	Investigation of Macular Choroidal Thickness and Blood Flow Change by Optical Coherence Tomography Angiography After Posterior Scleral Reinforcement. Frontiers in Medicine, 2021, 8, 658259.	1.2	13
85	Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families. Scientific Reports, 2016, 6, 35414.	1.6	12
86	Association of IL33 and IL1RAP Polymorphisms With Acute Anterior Uveitis. Current Molecular Medicine, 2018, 17, 471-477.	0.6	12
87	Novel CHM mutations identified in Chinese families with Choroideremia. Scientific Reports, 2016, 6, 35360.	1.6	11
88	Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus. BMJ Open, 2016, 6, e010649.	0.8	11
89	Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Scientific Reports, 2017, 7, 9064.	1.6	11
90	Relationship Between Cone Loss and Microvasculature Change in Retinitis Pigmentosa., 2019, 60, 4520.		11

#	Article	IF	CITATIONS
91	Variant Profiling of a Large Cohort of 138 Chinese Families With Autosomal Dominant Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology, 2020, 8, 629994.	1.8	11
92	Allelic Copy Number Variation in <i>FSCN2 </i> Detected Using Allele-Specific Genotyping and Multiplex Real-Time PCRs., 2008, 49, 3799.		10
93	Targeted exome sequencing identified two novel truncation mutations in GPR98 causing Usher syndrome. Clinical and Experimental Ophthalmology, 2016, 44, 197-199.	1.3	10
94	Retinal miRNAs variations in a large cohort of inherited retinal disease. Ophthalmic Genetics, 2018, 39, 175-179.	0.5	10
95	Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protocols, 2021, 2, 100438.	0.5	10
96	Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids. STAR Protocols, 2021, 2, 100444.	0.5	10
97	Whole Exome Sequencing Reveals Genetic Predisposition in a Large Family with Retinitis Pigmentosa. BioMed Research International, 2014, 2014, 1-6.	0.9	9
98	Wholeâ€exome sequencing identified <i>ARL2</i> as a novel candidate gene for MRCS (microcornea,) Tj ETQq0	0 0 gBT /	Overlock 10 T
99	A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family. Scientific Reports, 2014, 4, 6936.	1.6	8
100	Identification of novel mutations by targeted exome sequencing and the genotype-phenotype assessment of patients with achromatopsia. Journal of Translational Medicine, 2015, 13, 334.	1.8	8
101	Toll-Like Receptor 3 Activation Initiates Photoreceptor Cell Death In Vivo and In Vitro., 2017, 58, 801.		8
102	Circulating S100A8/A9 Levels Reflect Intraocular Inflammation in Uveitis Patients. Ocular Immunology and Inflammation, 2020, 28, 133-141.	1.0	8
103	The association of myopia progression with the morphological changes of optic disc and \hat{l}^2 -peripapillary atrophy in primary school students. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 677-687.	1.0	8
104	Nonhuman Primate Model of Oculocutaneous Albinism with <i>TYR</i> and <i>OCA2</i> Mutations. Research, 2020, 2020, 1658678.	2.8	8
105	Directed Induction of Retinal Organoids from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.2	7
106	Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Frontiers in Cell and Developmental Biology, 2021, 9, 645501.	1.8	7
107	miRâ€183 and miRâ€96 orchestrate both glucose and fat utilization in skeletal muscle. EMBO Reports, 2021, 22, e52247.	2.0	7
108	Retinal Degeneration Caused by Ago2 Disruption. , 2021, 62, 14.		7

#	Article	IF	Citations
109	Mutation of SLC7A14 causes auditory neuropathy and retinitis pigmentosa mediated by lysosomal dysfunction. Science Advances, 2022, 8, eabk0942.	4.7	7
110	Implantable collamer lens versus small incision lenticule extraction for high myopia correction: A systematic review and meta-analysis. BMC Ophthalmology, 2021, 21, 450.	0.6	7
111	RCC1-Like Domain and ORF15: Essentials in RPGR Gene. , 2006, 572, 29-33.		6
112	Identification of a Novel RPGR Exon ORF15 Mutation in a Family With X-linked Retinitis Pigmentosa. JAMA Ophthalmology, 2007, 125, 1407.	2.6	6
113	<i>CFHR2</i> à€rs2986127 as a genetic protective marker for acute anterior uveitis in Chinese patients. Journal of Gene Medicine, 2016, 18, 193-198.	1.4	6
114	Genetic Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Frontiers in Cell and Developmental Biology, 2021, 9, 650344.	1.8	6
115	Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet Journal of Rare Diseases, 2021, 16, 278.	1.2	6
116	Circular Rims2 Deficiency Causes Retinal Degeneration. Advanced Biology, 2021, 5, e2100906.	1.4	6
117	Novel deletion spanning RCC1-like domain of RPGR in Japanese X-linked retinitis pigmentosa family. Molecular Vision, $2005, 11, 535-41$.	1.1	6
118	New loci for refractive errors and ocular biometric parameters in young Chinese Han adults. Science China Life Sciences, 2022, 65, 2050-2061.	2.3	6
119	Embryonic stem-cell-derived retinal pigment epithelial cells for macular degeneration. Lancet, The, 2012, 379, 2050.	6.3	5
120	Abundant Neural circRNA Cdr1as Is Not Indispensable for Retina Maintenance. Frontiers in Cell and Developmental Biology, 2020, 8, 565543.	1.8	5
121	CFI-rs7356506 polymorphisms associated with Vogt-Koyanagi-Harada syndrome. Molecular Vision, 2016, 22, 9-17.	1.1	5
122	Human retinal pigment epithelial cells. Cell Proliferation, 2022, 55, e13153.	2.4	5
123	Requirements for humanâ€induced pluripotent stem cells. Cell Proliferation, 2022, 55, e13182.	2.4	5
124	Identification of a New Mutation p.P88L in Connexin 50 Associated with Dominant Congenital Cataract. Frontiers in Cell and Developmental Biology, 2022, 10, 794837.	1.8	5
125	Therapeutic Effects of Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on a Murine Model of Acute Type-2-Dominated Airway Inflammation. Stem Cell Reviews and Reports, 2022, 18, 2939-2951.	1.7	5
126	Phenotype-Based Genetic Analysis Reveals Missing Heritability of <i>ABCA4</i> Page Intronic Variants and Copy Number Variations., 2022, 63, 5.		5

#	Article	IF	CITATIONS
127	The Association between Maternal Reproductive Age and Progression of Refractive Error in Urban Students in Beijing. PLoS ONE, 2015, 10, e0139383.	1.1	4
128	Association of CD59 and CFH polymorphisms with acute anterior uveitis in Chinese population. Eye, 2016, 30, 1452-1457.	1.1	4
129	ATP1A3 mutation as a candidate cause ofÂautosomal dominant cone-rod dystrophy. Human Genetics, 2020, 139, 1391-1401.	1.8	4
130	Molecular screening of the LPCAT1 gene in patients with retinitis pigmentosa without defined mutations in known retinitis pigmentosa genes. Molecular Medicine Reports, 2015, 12, 5983-5988.	1.1	3
131	Molecular genetic analysis and phenotypic characteristics of a consanguineous family with glycogen storage disease type Ia. Molecular Medicine Reports, 2016, 14, 3251-3254.	1.1	3
132	Genotype-Phenotype Association Study Reveals CFI-Rs13104777 to be a Protective Genetic Marker Against Acute Anterior Uveitis. Ocular Immunology and Inflammation, 2018, 26, 51-56.	1.0	3
133	Unique presentation of congenital cataract concurrent with microcornea, microphthalmia plus posterior capsule defect in monozygotic twins caused by a novel GJA8 mutation. Eye, 2019, 33, 686-689.	1.1	3
134	Generation of three human iPSC lines from a retinitis pigmentosa family with SLC7A14 mutation. Stem Cell Research, 2020, 49, 102075.	0.3	3
135	Genotype-Phenotype Analysis and Mutation Spectrum in a Cohort of Chinese Patients With Congenital Nystagmus. Frontiers in Cell and Developmental Biology, 2021, 9, 627295.	1.8	3
136	Patient iPSC-derived retinal organoids: Observable retinal diseases in-a-dish. Histology and Histopathology, 2021, 36, 705-710.	0.5	3
137	Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Frontiers in Cell and Developmental Biology, 2021, 9, 754676.	1.8	3
138	Association Between Color Vision Deficiency and Myopia in Chinese Children Over a Five-Year Period., 2022, 63, 2.		3
139	A Novel Truncating Rs1 Mutation Associated With X-Linked Juvenile Retinoschisis. Japanese Journal of Ophthalmology, 2007, 51, 71-73.	0.9	2
140	Novel RPGR-ORF15 mutations in X-linked retinitis pigmentosa patients. Neuroscience Letters, 2011, 500, 16-19.	1.0	2
141	Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 326.	1.4	2
142	CLEC3B is a novel causative gene for macular-retinal dystrophy. Genetics in Medicine, 2022, 24, 1249-1260.	1.1	2
143	A new subset of small stem cells in bovine bone marrow stromal cell populations. Journal of Cellular Biochemistry, 2019, 120, 13881-13892.	1.2	1
144	Clinical Features and Natural History in a Cohort of Chinese Patients with RPE65-Associated Inherited Retinal Dystrophy. Journal of Clinical Medicine, 2021, 10, 5229.	1.0	1

#	Article	IF	CITATIONS
145	MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. IScience, 2022, 25, 104058.	1.9	1
146	Mutational screening of , , , , , and in a Chinese cohort of 103 patients with nonsyndromic high myopia Molecular Vision, 2021, 27, 706-717.	1.1	1
147	Retinal Organoids over the Decade. , 0, , .		1
148	Response to Heller and Bolz. Genetics in Medicine, 2015, 17, 508-509.	1.1	0
149	Drug-inducible synergistic gene silencing with multiple small hairpin RNA molecules for gene function study in animal model. Transgenic Research, 2015, 24, 309-317.	1.3	O
150	Genotype Profile of Global EYS-Associated Inherited Retinal Dystrophy and Clinical Findings in a Large Chinese Cohort. Frontiers in Cell and Developmental Biology, 2021, 9, 634220.	1.8	0
151	Mutation in CEP250 Cause Non-Syndromic Retinitis Pigmentosa. SSRN Electronic Journal, 0, , .	0.4	O
152	Nonvectorial responses in photoreceptor cells stimulated by electrical fields. Scientia Sinica Vitae, 2018, 48, 544-555.	0.1	0
153	ä¸å»½çœ¼ç§'领䟟干细èfžå†ç"ŸåŒ»å¦çŽ°çŠ¶åŠå±•朻. Scientia Sinica Vitae, 2021, , .	0.1	0
154	From retinal organoids to & amp; Idquo; retinal organ& amp; rdquo;. Scientia Sinica Vitae, 2022, , .	0.1	0