
Krystyna Domanska-Janik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7427200/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Efficiency assessment of irrigation as an alternative method for improving the regenerative potential of nonhealing wounds. Wound Repair and Regeneration, 2022, , .	1.5	3
2	Secondary release of the peripheral nerve with autologous fat derivates benefits for functional and sensory recovery. Neural Regeneration Research, 2021, 16, 856.	1.6	5
3	Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells, 2021, 10, 717.	1.8	10
4	Biomimetic microenvironmental preconditioning enhance neuroprotective properties of human mesenchymal stem cells derived from Wharton's Jelly (WJ-MSCs). Scientific Reports, 2020, 10, 16946.	1.6	14
5	Intrathecal Infusion of Autologous Adipose-Derived Regenerative Cells in Autoimmune Refractory Epilepsy: Evaluation of Safety and Efficacy. Stem Cells International, 2020, 2020, 1-16.	1.2	13
6	Bone Defect Repair Using a Bone Substitute Supported by Mesenchymal Stem Cells Derived from the Umbilical Cord. Stem Cells International, 2020, 2020, 1-15.	1.2	12
7	Neuroprotective Potential and Paracrine Activity of Stromal Vs. Culture-Expanded hMSC Derived from Wharton Jelly under Co-Cultured with Hippocampal Organotypic Slices. Molecular Neurobiology, 2018, 55, 6021-6036.	1.9	12
8	Human Somatic Stem Cell Neural Differentiation Potential. Results and Problems in Cell Differentiation, 2018, 66, 21-87.	0.2	1
9	Intraspinal Transplantation of the Adipose Tissue-Derived Regenerative Cells in Amyotrophic Lateral Sclerosis in Accordance with the Current Experts' Recommendations: Choosing Optimal Monitoring Tools. Stem Cells International, 2018, 2018, 1-16.	1.2	13
10	Phenotypic, Functional, and Safety Control at Preimplantation Phase of MSC-Based Therapy. Stem Cells International, 2016, 2016, 1-13.	1.2	30
11	Induction of Endothelial Phenotype from Wharton's Jelly-Derived MSCs and Comparison of Their Vasoprotective and Neuroprotective Potential with Primary WJ-MSCs in CA1 Hippocampal Region Ex Vivo. Cell Transplantation, 2016, 25, 715-727.	1.2	19
12	Enhanced neuro-therapeutic potential of Wharton's Jelly–derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy, 2016, 18, 497-509.	0.3	34
13	Complex assessment of distinct cognitive impairments following ouabain injection into the rat dorsoloateral striatum. Behavioural Brain Research, 2015, 289, 133-140.	1.2	8
14	Long-Term MRI Cell Tracking after Intraventricular Delivery in a Patient with Global Cerebral Ischemia and Prospects for Magnetic Navigation of Stem Cells within the CSF. PLoS ONE, 2014, 9, e97631.	1.1	55
15	Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy, 2014, 16, 881-892.	0.3	71
16	Ischemic brain injury: A consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Archives of Biochemistry and Biophysics, 2013, 534, 88-97.	1.4	60
17	Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiologiae Experimentalis, 2011, 71, 46-64.	0.4	13
18	Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child with Severe Global Brain Ischemic Injury. Cell Medicine, 2010, 1, 71-80.	5.0	41

#	Article	IF	CITATIONS
19	A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells. International Journal of Developmental Biology, 2008, 52, 237-248.	0.3	25
20	Neuronal Differentiation of Human Umbilical Cord Blood Neural Stem-Like Cell Line. Neurodegenerative Diseases, 2006, 3, 19-26.	0.8	41
21	Neural commitment of cord blood stem cells (HUCB-NSC/NP): therapeutic perspectives. Acta Neurobiologiae Experimentalis, 2006, 66, 279-91.	0.4	8
22	Paralytic Tremor (pt): A New Allele of the Proteolipid Protein Gene in Rabbits. Journal of Neurochemistry, 2002, 63, 2210-2216.	2.1	28
23	Proteolipid/DM-20 proteins bearing the paralytic tremor mutation in peripheral nerves and transfected Cos-7 cells. Neurochemical Research, 1996, 21, 423-430.	1.6	19
24	Effect of Brain Ischemia on Protein Kinase C. Journal of Neurochemistry, 1992, 58, 1432-1439.	2.1	76
25	Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant paralytic tremor rabbit myelin. Molecular and Chemical Neuropathology, 1992, 16, 273-288.	1.0	11
26	Effects of anoxia and depolarization on the movement of carbon atoms derived from glucose into macromolecular fractions in rat brain slices. Journal of Neuroscience Research, 1979, 4, 247-260.	1.3	7