
Takuya Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7427158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant and Cell Physiology, 2022, 63, 120-134.	3.1	9
2	Longâ€distance stress and developmental signals associated with abscisic acid signaling in environmental responses. Plant Journal, 2021, 105, 477-488.	5.7	23
3	Metabolic engineering: Towards water deficiency adapted crop plants. Journal of Plant Physiology, 2021, 258-259, 153375.	3.5	6
4	Circadian Control of Metabolism by the Clock Component TOC1. Frontiers in Plant Science, 2021, 12, 683516.	3.6	18
5	Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. Plant Physiology, 2021, 185, 352-368.	4.8	24
6	Changes in intracellular NAD status affect stomatal development in an abscisic acidâ€dependent manner. Plant Journal, 2020, 104, 1149-1168.	5.7	21
7	Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nature Communications, 2020, 11, 6184.	12.8	59
8	An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under waterâ€deficit stress. Plant Journal, 2020, 103, 1614-1632.	5.7	55
9	Characterization of the complete chloroplast genome of Betula chichibuensis (Betulaceae), a critically endangered limestone birch. Mitochondrial DNA Part B: Resources, 2020, 5, 2166-2167.	0.4	1
10	Flowers and climate change: a metabolic perspective. New Phytologist, 2019, 224, 1425-1441.	7.3	90
11	Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends in Plant Science, 2019, 24, 625-635.	8.8	189
12	The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. Plant Cell, 2019, 31, 84-105.	6.6	84
13	Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. Progress in Biophysics and Molecular Biology, 2019, 146, 37-49.	2.9	26
14	A geneâ€ s tacking approach to overcome the tradeâ€off between drought stress tolerance and growth in Arabidopsis. Plant Journal, 2019, 97, 240-256.	5.7	63
15	Remote Control of Transpiration via ABA. Trends in Plant Science, 2018, 23, 755-758.	8.8	33
16	ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants, 2017, 3, 16204.	9.3	97
17	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	5.7	156
18	Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant Journal, 2017, 90, 61-78.	5.7	173

Takuya Yoshida

#	Article	IF	CITATIONS
19	Metabolism within the specialized guard cells of plants. New Phytologist, 2017, 216, 1018-1033.	7.3	77
20	Double overexpression of <scp>DREB</scp> and <scp>PIF</scp> transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal, 2017, 15, 458-471.	8.3	145
21	Characterization of Molecular and Physiological Responses Under Water Deficit of Genetically Modified Soybean Plants Overexpressing the AtAREB1 Transcription Factor. Plant Molecular Biology Reporter, 2016, 34, 410-426.	1.8	22
22	SNACâ€As, stressâ€responsive NAC transcription factors, mediate ABAâ€inducible leaf senescence. Plant Journal, 2015, 84, 1114-1123.	5.7	202
23	Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg ²⁺ Concentrations in Arabidopsis. Plant Physiology, 2015, 167, 1039-1057.	4.8	51
24	Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant and Cell Physiology, 2015, 56, 1043-1052.	3.1	100
25	Four <scp><i>A</i></scp> <i>rabidopsis</i> â€ <scp>AREB</scp> / <scp>ABF</scp> transcription factors function predominantly in gene expression downstream of <scp>SnRK2</scp> kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell and Environment, 2015, 38, 35-49.	5.7	491
26	ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 2014, 21, 133-139.	7.1	784
27	Pivotal role of the AREB/ABFâ€SnRK2 pathway in ABREâ€mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 2013, 147, 15-27.	5.2	444
28	Overexpression of the ABA-Dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit. Plant Molecular Biology Reporter, 2013, 31, 719-730.	1.8	64
29	Two Regulatory Networks Mediated by Light and Glucose Involved in Glycolytic Gene Expression in Cyanobacteria. Plant and Cell Physiology, 2012, 53, 1720-1727.	3.1	8
30	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	3.4	241
31	Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 491-494.	0.7	6
32	An ABRE Promoter Sequence is Involved in Osmotic Stress-Responsive Expression of the DREB2A Gene, Which Encodes a Transcription Factor Regulating Drought-Inducible Genes in Arabidopsis. Plant and Cell Physiology, 2011, 52, 2136-2146.	3.1	263
33	AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 2010, 61, 672-685.	5.7	871
34	Structural basis of abscisic acid signalling. Nature, 2009, 462, 609-614.	27.8	490
35	Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 2009, 50, 1345-1363.	3.1	636
36	Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132.	3.1	599