David A Beattie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7426834/publications.pdf

Version: 2024-02-01

117625 155660 3,972 130 34 55 citations h-index g-index papers 131 131 131 4741 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomaterials Science and Engineering, 2023, 9, 2819-2837.	5.2	9
2	Chitosan nanoparticles facilitate improved intestinal permeation and oral pharmacokinetics of the mast cell stabiliser cromoglycate. International Journal of Pharmaceutics, 2022, 612, 121382.	5.2	4
3	Liposomal 5-Fluorouracil Polymer Complexes Facilitate Tumor-Specific Delivery: Pharmaco-Distribution Kinetics Using Microdialysis. Pharmaceutics, 2022, 14, 221.	4.5	4
4	Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods, 2022, 11, 34.	4.3	8
5	A Comparison of Chitosan, Mesoporous Silica and Poly(lactic-co-glycolic) Acid Nanocarriers for Optimising Intestinal Uptake of Oral Protein Therapeutics. Journal of Pharmaceutical Sciences, 2021, 110, 217-227.	3.3	9
6	TIRF Microscopyâ€Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angewandte Chemie, 2021, 133, 2097-2101.	2.0	6
7	A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Delivery and Translational Research, 2021, 11, 1261-1272.	5.8	20
8	TIRF Microscopyâ∈Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angewandte Chemie - International Edition, 2021, 60, 2069-2073.	13.8	7
9	Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Scientific Reports, 2021, 11, 1690.	3.3	28
10	Interfacial Tension Sensor for Low Dosage Surfactant Detection. Colloids and Interfaces, 2021, 5, 9.	2.1	8
11	Diffusion of Lipid Nanovesicles Bound to a Lipid Membrane Is Associated with the Partial-Slip Boundary Condition. Nano Letters, 2021, 21, 8503-8509.	9.1	5
12	Investigation of Self-Emulsifying Drug-Delivery System Interaction with a Biomimetic Membrane under Conditions Relevant to the Small Intestine. Langmuir, 2021, 37, 10200-10213.	3 . 5	8
13	Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Advanced Drug Delivery Reviews, 2021, 177, 113948.	13.7	45
14	Mechanical properties of thin films at the dodecane-water interface, for multilayered emulsion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127051.	4.7	3
15	Harnessing the potential of nanostructured formulations to mimic the food effect of lurasidone. International Journal of Pharmaceutics, 2021, 608, 121098.	5. 2	5
16	Polyelectrolyte multilayer formation on protein layer supports. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127470.	4.7	3
17	Can small air bubbles probe very low frother concentration faster?. Soft Matter, 2021, 17, 9916-9925.	2.7	3
18	ATR FTIR Study of the Interaction of TiO $<$ sub $>$ 2 $<$ /sub $>$ Nanoparticle Films with \hat{I}^2 -Lactoglobulin and Bile Salts. Langmuir, 2021, 37, 13278-13290.	3.5	7

#	Article	IF	CITATIONS
19	The effect of drug ionization on lipid-lased formulations for the oral delivery of anti-psychotics. ADMET and DMPK, 2020, 8, 437-451.	2.1	2
20	Influence of Bile Composition on Membrane Incorporation of Transient Permeability Enhancers. Molecular Pharmaceutics, 2020, 17, 4226-4240.	4.6	24
21	Contrasting Anti-obesity Effects of Smectite Clays and Mesoporous Silica in Sprague-Dawley Rats. ACS Applied Bio Materials, 2020, 3, 7779-7788.	4.6	7
22	Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics, 2020, 12, 687.	4.5	6
23	Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size. Langmuir, 2020, 36, 9693-9700.	3.5	6
24	Incorporation of FGF-2 into Pharmaceutical Grade Fucoidan/Chitosan Polyelectrolyte Multilayers. Marine Drugs, 2020, 18, 531.	4.6	8
25	Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles. Nanomaterials, 2020, 10, 815.	4.1	24
26	Engineering PLGA–Lipid Hybrid Microparticles for Enhanced Macrophage Uptake. ACS Applied Bio Materials, 2020, 3, 4159-4167.	4.6	14
27	Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. Langmuir, 2020, 36, 3367-3376.	3.5	7
28	Lysozyme uptake into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers under physiological conditions. Journal of Colloid and Interface Science, 2020, 565, 555-566.	9.4	15
29	Poly(lactic- <i>co</i> -glycolic) Acid–Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8030-8039.	8.0	34
30	Adsorption of Carboxymethyl Cellulose onto Titania Particle Films Studied with in Situ IR Spectroscopic Analysis. Langmuir, 2019, 35, 10734-10743.	3.5	5
31	Odd-even effects on hydration of natural polyelectrolyte multilayers: An in situ synchrotron FTIR microspectroscopy study. Journal of Colloid and Interface Science, 2019, 553, 720-733.	9.4	14
32	Doxorubicin-Loaded Delta Inulin Conjugates for Controlled and Targeted Drug Delivery: Development, Characterization, and In Vitro Evaluation. Pharmaceutics, 2019, 11, 581.	4.5	20
33	Recent advances in studies of bubble-solid interactions and wetting film stability. Current Opinion in Colloid and Interface Science, 2019, 44, 48-58.	7.4	24
34	Controlling Bubble–Solid Surface Interactions with Environmentally Benign Interfacial Modifiers. Journal of Physical Chemistry C, 2019, 123, 3645-3656.	3.1	12
35	Mobile or Immobile? Rise Velocity of Air Bubbles in High-Purity Water. Journal of Physical Chemistry C, 2019, 123, 15131-15138.	3.1	38
36	Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels. Nature Communications, 2019, 10, 2528.	12.8	47

#	Article	IF	CITATIONS
37	Nanostructured clay particles supplement orlistat action in inhibiting lipid digestion: An in vitro evaluation for the treatment of obesity. European Journal of Pharmaceutical Sciences, 2019, 135, 1-11.	4.0	9
38	An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opinion on Drug Delivery, 2019, 16, 507-524.	5.0	38
39	Improving Correlations Between Drug Solubilization and InÂVitro Lipolysis by Monitoring the Phase Partitioning of Lipolytic Species for Lipid-Based Formulations. Journal of Pharmaceutical Sciences, 2019, 108, 295-304.	3.3	14
40	The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface. Colloids and Surfaces B: Biointerfaces, 2019, 176, 412-419.	5.0	15
41	Spray Dried Smectite Clay Particles as a Novel Treatment against Obesity. Pharmaceutical Research, 2019, 36, 21.	3.5	15
42	Fractionation and characterisation of hard milk fat crystals using atomic force microscopy. Food Chemistry, 2019, 279, 98-104.	8.2	8
43	Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Advanced Drug Delivery Reviews, 2019, 142, 102-117.	13.7	76
44	Revealing the Nanostructure of Glyceryl Tristearate Crystals by Atomic Force Microscopy. Crystal Growth and Design, 2019, 19, 513-519.	3.0	2
45	Adsorption of ionic liquids onto silver studied by XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 78-85.	4.7	35
46	Dynamic wetting of imidazolium-based ionic liquids on gold and glass. Physical Chemistry Chemical Physics, 2018, 20, 2084-2093.	2.8	22
47	Multi-modal stabilisation of emulsions using a combination of hydrophilic particles and an amino acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 765-773.	4.7	5
48	Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base. European Journal of Pharmaceutical Sciences, 2018, 118, 40-48.	4.0	16
49	A Novel Soft Contact Piezo-Controlled Liquid Cell for Probing Polymer Films under Confinement using Synchrotron FTIR Microspectroscopy. Scientific Reports, 2018, 8, 17804.	3.3	8
50	Adsorption of a Polyethoxylated Surfactant from Aqueous Solution to Silica Nanoparticle Films Studied with In Situ Attenuated Total Reflection Infrared Spectroscopy and Colloid Probe Atomic Force Microscopy. Langmuir, 2018, 34, 13481-13490.	3.5	3
51	Recent Advances in Macro ATR-FTIR Microspectroscopic Technique for High Resolution Surface Characterisation at Australian Synchrotron IR Beamline. , 2018 , , .		0
52	Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Advances in Colloid and Interface Science, 2018, 260, 1-23.	14.7	20
53	Diffusing wave spectroscopy (DWS) methods applied to double emulsions. Current Opinion in Colloid and Interface Science, 2018, 37, 74-87.	7.4	21
54	Interfacial characterisation for flotation: 1. Solid-liquid interface. Current Opinion in Colloid and Interface Science, 2018, 37, 61-73.	7.4	17

#	Article	IF	CITATIONS
55	Low-Bandgap Conjugated Polymer Dots for Near-Infrared Fluorescence Imaging. ACS Applied Nano Materials, 2018, 1, 4801-4808.	5.0	19
56	Interfacial characterisation for flotation: 2. Air-water interface. Current Opinion in Colloid and Interface Science, 2018, 37, 115-127.	7.4	16
57	Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles. Journal of Colloid and Interface Science, 2018, 532, 666-679.	9.4	16
58	Formation and tribology of fucoidan/chitosan polyelectrolyte multilayers on PDMS substrates. Biotribology, 2017, 12, 15-23.	1.9	6
59	Comparison across Three Hybrid Lipid-Based Drug Delivery Systems for Improving the Oral Absorption of the Poorly Water-Soluble Weak Base Cinnarizine. Molecular Pharmaceutics, 2017, 14, 4008-4018.	4.6	20
60	Modulating the Lipaseâ€Mediated Bioactivity of Particleâ€Lipid Conjugates Through Changes in Nanostructure and Surface Chemistry. European Journal of Lipid Science and Technology, 2017, 119, 1700213.	1.5	10
61	Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films. Colloids and Surfaces B: Biointerfaces, 2017, 159, 468-476.	5.0	16
62	The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: protein adsorption and protein–polysaccharide complexation/stripping on natural polysaccharide films on solid supports. Physical Chemistry Chemical Physics, 2017, 19, 23790-23801.	2.8	21
63	The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: elasticity and susceptibility to saloplasticity of strongly dissociated synthetic polymers at fluid–fluid interfaces. Physical Chemistry Chemical Physics, 2017, 19, 23781-23789.	2.8	15
64	Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32732-32742.	8.0	36
65	Interfacial processes that modulate the kinetics of lipase-mediated catalysis using porous silica host particles. RSC Advances, 2016, 6, 43802-43813.	3.6	27
66	Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Advances, 2016, 6, 78385-78395.	3.6	33
67	Surficial Siloxane-to-Silanol Interconversion during Room-Temperature Hydration/Dehydration of Amorphous Silica Films Observed by ATR-IR and TIR-Raman Spectroscopy. Langmuir, 2016, 32, 1568-1576.	3.5	101
68	Orientating lipase molecules through surface chemical control for enhanced activity: A QCM-D and ToF-SIMS investigation. Colloids and Surfaces B: Biointerfaces, 2016, 142, 173-181.	5.0	31
69	Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules. Advances in Colloid and Interface Science, 2016, 237, 52-75.	14.7	34
70	Attenuated Total Reflection FTIR Microspectroscopy at the Australian Synchrotron. , 2016, , .		3
71	Static and dynamic wetting behaviour of ionic liquids. Advances in Colloid and Interface Science, 2015, 222, 162-171.	14.7	52
72	Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry. Soft Matter, 2015, 11, 2110-2124.	2.7	39

#	Article	IF	Citations
73	Lubrication of starch in ionic liquid–water mixtures: Soluble carbohydrate polymers form a boundary film on hydrophobic surfaces. Carbohydrate Polymers, 2015, 133, 507-516.	10.2	12
74	Spectroscopic study of ionic liquid adsorption from solution onto gold. Physical Chemistry Chemical Physics, 2015, 17, 4199-4209.	2.8	29
75	In Situ ATR FTIR Spectroscopic Study of the Formation and Hydration of a Fucoidan/Chitosan Polyelectrolyte Multilayer. Langmuir, 2015, 31, 11249-11259.	3.5	35
76	Bubble–surface interactions with graphite in the presence of adsorbed carboxymethylcellulose. Soft Matter, 2015, 11, 587-599.	2.7	22
77	QCM-D and ToF-SIMS Investigation to Deconvolute the Relationship between Lipid Adsorption and Orientation on Lipase Activity. Langmuir, 2015, 31, 10198-10207.	3.5	23
78	In situ particle film ATR FTIR spectroscopy of poly (N-isopropyl acrylamide) (PNIPAM) adsorption onto talc. Physical Chemistry Chemical Physics, 2014, 16, 25143-25151.	2.8	35
79	Insights into hydrophobic molecule release from polyelectrolyte multilayer films using in situ and ex situ techniques. Physical Chemistry Chemical Physics, 2014, 16, 22409-22417.	2.8	9
80	The Role of Porous Nanostructure in Controlling Lipase-Mediated Digestion of Lipid Loaded into Silica Particles. Langmuir, 2014, 30, 2779-2788.	3.5	50
81	Carboxymethylcellulose Adsorption on Molybdenite: The Effect of Electrolyte Composition on Adsorption, Bubble–Surface Collisions, and Flotation. Langmuir, 2014, 30, 11975-11984.	3.5	45
82	Challenges in imaging of soft layers and structures at solid surfaces using atomic force microscopy. Surface Innovations, 2014, 2, 151-159.	2.3	9
83	The effect of impurities and cleavage characteristics on talc hydrophobicity and polymer adsorption. International Journal of Mineral Processing, 2013, 118, 34-42.	2.6	27
84	The influence of polymer chemistry on adsorption and flocculation of talc suspensions. Chemical Engineering Journal, 2013, 220, 375-382.	12.7	35
85	Molecularly-Thin Precursor Films of Imidazolium-Based Ionic Liquids on Mica. Journal of Physical Chemistry C, 2013, 117, 23676-23684.	3.1	46
86	Synchrotron FTIR Microscopy of Langmuir–Blodgett Monolayers and Polyelectrolyte Multilayers at the Solid–Solid Interface. Langmuir, 2012, 28, 1683-1688.	3.5	10
87	<i>In Situ</i> ATR FTIR Study of Dextrin Adsorption on Anatase TiO ₂ . Langmuir, 2012, 28, 4233-4240.	3.5	29
88	Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. Journal of Colloid and Interface Science, 2012, 368, 608-615.	9.4	67
89	Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications. Australian Journal of Chemistry, 2011, 64, 294.	0.9	48
90	Influence of solution conditions and polymer chemistry on the adsorption behaviour of anionic dispersants onto chalcocite in aqueous media. Chemical Engineering Journal, 2011, 171, 104-112.	12.7	3

#	Article	IF	Citations
91	The role of mineral surface chemistry in modified dextrin adsorption. Journal of Colloid and Interface Science, 2011, 357, 510-520.	9.4	14
92	Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite. Minerals Engineering, 2010, 23, 928-936.	4.3	85
93	Adsorption of tailored carboxymethyl cellulose polymers on talc and chalcopyrite: Correlation between coverage, wettability, and flotation. Minerals Engineering, 2010, 23, 985-993.	4.3	61
94	In situ atomic force microscopy of modified dextrin adsorption on hydrophobic and hydrophilic layered silicate minerals. Journal of Colloid and Interface Science, 2010, 344, 429-437.	9.4	19
95	Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements. Journal of Colloid and Interface Science, 2010, 345, 417-426.	9.4	49
96	Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: Variation of polymer concentration and ionic strength. Journal of Colloid and Interface Science, 2010, 346, 303-310.	9.4	30
97	Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite. International Journal of Mineral Processing, 2010, 94, 43-51.	2.6	95
98	The pivotal role of polymer adsorption and flocculation conditions on dewaterability of talcaceous dispersions. Chemical Engineering Journal, 2010, 162, 457-465.	12.7	14
99	Chemical Defects in the Highly Fluorescent Conjugated Polymer Dots. Langmuir, 2010, 26, 17785-17789.	3.5	75
100	Reduction of Surface Hydrophobicity Using a Stimulus-Responsive Polysaccharide. Langmuir, 2010, 26, 15865-15874.	3.5	39
101	Synchrotron XPS studies of collector adsorption and co-adsorption on gold and gold: silver alloy surfaces. International Journal of Mineral Processing, 2009, 92, 162-168.	2.6	28
102	Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 2009, 331, 251-262.	9.4	351
103	The influence of polymeric dispersants on sericite–chalcocite particle interactions in aqueous media. Chemical Engineering Journal, 2009, 152, 471-479.	12.7	18
104	Sericite–chalcocite mineral particle interactions and hetero-aggregation (sliming) mechanism in aqueous media. Chemical Engineering Science, 2009, 64, 3083-3093.	3.8	19
105	Adsorption of Dextrin on Hydrophobic Minerals. Langmuir, 2009, 25, 9913-9921.	3.5	41
106	Effect of Adsorbed Polymers on Bubbleâ-'Particle Attachment. Langmuir, 2009, 25, 13290-13294.	3.5	26
107	The Influence of Surface Hydrophobicity on Polyacrylamide Adsorption. Langmuir, 2009, 25, 4514-4521.	3.5	41
108	Copper and arsenate co-sorption at the mineral–water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 2008, 322, 399-413.	9.4	75

#	Article	IF	Citations
109	In situ particle film ATR-FTIR studies of CMC adsorption on talc: The effect of ionic strength and multivalent metal ions. Minerals Engineering, 2008, 21, 1013-1019.	4.3	32
110	In Situ ATR FTIR Studies of SO ₄ Adsorption on Goethite in the Presence of Copper Ions. Environmental Science & Envi	10.0	61
111	In Situ Particle Film ATR FTIR Spectroscopy of Carboxymethyl Cellulose Adsorption on Talc: Binding Mechanism, pH Effects, and Adsorption Kinetics. Langmuir, 2008, 24, 8036-8044.	3.5	121
112	Light-Induced Aggregation of Colloidal Gold Nanoparticles Capped by Thymine Derivatives. Langmuir, 2008, 24, 4506-4511.	3 . 5	33
113	Adsorption of Modified Dextrins on Talc: Effect of Surface Coverage and Hydration Water on Hydrophobicity Reduction. Langmuir, 2008, 24, 6121-6127.	3.5	41
114	Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Physical Chemistry Chemical Physics, 2007, 9, 510-520.	2.8	78
115	Synthesis and Surface Structure of Thymine-Functionalized, Self-Assembled Monolayer-Protected Gold Nanoparticles. Langmuir, 2007, 23, 9170-9177.	3.5	35
116	Colloid Stability of Thymine-Functionalized Gold Nanoparticles. Langmuir, 2007, 23, 12096-12103.	3.5	35
117	Raman Scattering from Confined Liquid Films in the Sub-Nanometre Regime. Tribology Letters, 2007, 27, 159-167.	2.6	18
118	Preparation, characterization and electrochemistry of carbon nanotubes directly attached to Si(100) surfaces. , 2006, , .		2
119	Sum-Frequency Spectroscopy of a Monolayer of Zinc Arachidate at the Solidâ^'Solid Interface. Journal of Physical Chemistry B, 2006, 110, 2278-2292.	2.6	31
120	Optical properties of covalently anchored single-walled carbon nanotube arrays on silicon (100) surfaces., 2006, 6415, 36.		0
121	Influence of adsorbed polysaccharides and polyacrylamides on talc flotation. International Journal of Mineral Processing, 2006, 78, 238-249.	2.6	67
122	An in situ ATR–FTIR study of polyacrylamide adsorption at the talc surface. Journal of Colloid and Interface Science, 2006, 297, 54-61.	9.4	125
123	The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Minerals Engineering, 2006, 19, 598-608.	4.3	68
124	XPS and ToF-SIMS study of a chalcopyrite-pyrite-sphalerite mixture treated with xanthate and sodium bisulphite. Surface and Interface Analysis, 2005, 37, 699-709.	1.8	51
125	A re-analysis of the vacuum ultraviolet absorption spectrum of I2, Br2, and ICl using ionization energies determined from their ZEKE-PFI photoelectron spectra. Physical Chemistry Chemical Physics, 2002, 4, 1398-1411.	2.8	26
126	The spectroscopy of Rydberg to Rydberg transitions in I2 and Br2 investigated by vibrationally induced autoionization. Physical Chemistry Chemical Physics, 2002, 4, 1419-1424.	2.8	5

#	Article	IF	CITATION
127	Probing buried interfaces with non-linear optical spectroscopy. Surface Science, 2002, 500, 545-576.	1.9	129
128	A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vibrational Spectroscopy, 2000, 24, 109-123.	2.2	45
129	(2+1) REMPI spectra of the I2–Krand I2–N2van der Waals complexes and the (2+1[prime]) ZEKE[ndash]PFI photoelectron spectrum of I2+–Kr. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4245-4251.	1.7	12
130	Structural isomerism in the I2î—,Ar Van der Waals complex studied by ZEKE-PFI spectroscopy: evidence for both linear and T-shaped isomers. Chemical Physics Letters, 1996, 259, 554-562.	2.6	31