Rasmus Nielsen

List of Publications by Citations

Source: https://exaly.com/author-pdf/7426678/rasmus-nielsen-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65,078 328 254 122 h-index g-index citations papers 362 78,292 7.88 14.8 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
328	A metagenome-wide association study of gut microbiota in type 2 diabetes. <i>Nature</i> , 2012 , 490, 55-60	50.4	3779
327	A draft sequence of the Neandertal genome. <i>Science</i> , 2010 , 328, 710-722	33.3	2599
326	Bayesian inference of phylogeny and its impact on evolutionary biology. <i>Science</i> , 2001 , 294, 2310-4	33.3	2114
325	Codon-substitution models for heterogeneous selection pressure at amino acid sites. <i>Genetics</i> , 2000 , 155, 431-49	4	1740
324	Bayes empirical bayes inference of amino acid sites under positive selection. <i>Molecular Biology and Evolution</i> , 2005 , 22, 1107-18	8.3	1669
323	Evolution of genes and genomes on the Drosophila phylogeny. <i>Nature</i> , 2007 , 450, 203-18	50.4	1586
322	Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. <i>Molecular Biology and Evolution</i> , 2005 , 22, 2472-9	8.3	1312
321	Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. <i>Molecular Biology and Evolution</i> , 2000 , 17, 32-43	8.3	1210
320	Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. <i>Genetics</i> , 1998 , 148, 929-36	4	1190
319	Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. <i>Genetics</i> , 2004 , 167, 747-	-60	1137
318	Molecular signatures of natural selection. <i>Annual Review of Genetics</i> , 2005 , 39, 197-218	14.5	1123
317	ANGSD: Analysis of Next Generation Sequencing Data. <i>BMC Bioinformatics</i> , 2014 , 15, 356	3.6	1087
316	Evolutionary and biomedical insights from the rhesus macaque genome. <i>Science</i> , 2007 , 316, 222-34	33.3	1072
315	Distinguishing migration from isolation: a Markov chain Monte Carlo approach. <i>Genetics</i> , 2001 , 158, 885	5-246	1031
314	Sequencing of 50 human exomes reveals adaptation to high altitude. <i>Science</i> , 2010 , 329, 75-8	33.3	1020
313	Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. <i>Molecular Biology and Evolution</i> , 2002 , 19, 908-17	8.3	993
312	Genotype and SNP calling from next-generation sequencing data. <i>Nature Reviews Genetics</i> , 2011 , 12, 443-51	30.1	959

(2011-2010)

311	The sequence and de novo assembly of the giant panda genome. <i>Nature</i> , 2010 , 463, 311-7	50.4	864
310	Population genomics of Bronze Age Eurasia. <i>Nature</i> , 2015 , 522, 167-72	50.4	827
309	Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 2785-90	11.5	789
308	The evolution of gene expression levels in mammalian organs. <i>Nature</i> , 2011 , 478, 343-8	50.4	787
307	The diploid genome sequence of an Asian individual. <i>Nature</i> , 2008 , 456, 60-5	50.4	744
306	Statistical tests of selective neutrality in the age of genomics. <i>Heredity</i> , 2001 , 86, 641-7	3.6	707
305	A scan for positively selected genes in the genomes of humans and chimpanzees. <i>PLoS Biology</i> , 2005 , 3, e170	9.7	705
304	Genomic scans for selective sweeps using SNP data. <i>Genome Research</i> , 2005 , 15, 1566-75	9.7	668
303	Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. <i>Nature Biotechnology</i> , 2011 , 30, 105-11	44.5	635
302	Natural selection on protein-coding genes in the human genome. <i>Nature</i> , 2005 , 437, 1153-7	50.4	615
301	Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. <i>Nature</i> , 2014 , 512, 194-	7 50.4	605
300	Stochastic mapping of morphological characters. <i>Systematic Biology</i> , 2003 , 52, 131-58	8.4	590
299	Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. <i>Nature</i> , 2014 , 505, 87-97	150.4	581
298	Ancient human genome sequence of an extinct Palaeo-Eskimo. <i>Nature</i> , 2010 , 463, 757-62	50.4	567
297	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. <i>Nature</i> , 2013 , 499, 74-8	50.4	563
296	An Aboriginal Australian genome reveals separate human dispersals into Asia. <i>Science</i> , 2011 , 334, 94-8	33.3	528
295	Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. <i>Science</i> , 2003 , 302, 1960-3	33.3	517
294	Species-specific responses of Late Quaternary megafauna to climate and humans. <i>Nature</i> , 2011 , 479, 359-64	50.4	483

293	Assessing the evolutionary impact of amino acid mutations in the human genome. <i>PLoS Genetics</i> , 2008 , 4, e1000083	6	473
292	Synonymous and nonsynonymous rate variation in nuclear genes of mammals. <i>Journal of Molecular Evolution</i> , 1998 , 46, 409-18	3.1	463
291	Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. <i>Genetics</i> , 2004 , 168, 1041-51	4	443
290	Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. <i>Genetics</i> , 2003 , 164, 1229-36	4	430
289	Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. <i>Genome Research</i> , 2005 , 15, 1-18	9.7	410
288	Patterns of positive selection in six Mammalian genomes. <i>PLoS Genetics</i> , 2008 , 4, e1000144	6	405
287	The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. <i>PLoS ONE</i> , 2007 , 2, e197	3.7	402
286	Pervasive adaptive evolution in mammalian fertilization proteins. <i>Molecular Biology and Evolution</i> , 2003 , 20, 18-20	8.3	382
285	Recent and ongoing selection in the human genome. <i>Nature Reviews Genetics</i> , 2007 , 8, 857-68	30.1	365
284	The genome of a Late Pleistocene human from a Clovis burial site in western Montana. <i>Nature</i> , 2014 , 506, 225-9	50.4	357
283	Ascertainment bias in studies of human genome-wide polymorphism. <i>Genome Research</i> , 2005 , 15, 1496	-59072	351
282	Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. <i>PLoS Genetics</i> , 2011 , 7, e1002355	6	349
281	Localizing recent adaptive evolution in the human genome. <i>PLoS Genetics</i> , 2007 , 3, e90	6	342
2 80	Tracing the peopling of the world through genomics. <i>Nature</i> , 2017 , 541, 302-310	50.4	338
279	Genome-wide patterns of nucleotide polymorphism in domesticated rice. <i>PLoS Genetics</i> , 2007 , 3, 1745-	56	334
278	Evidence for archaic adaptive introgression in humans. <i>Nature Reviews Genetics</i> , 2015 , 16, 359-71	30.1	328
277	Ancient biomolecules from deep ice cores reveal a forested southern Greenland. <i>Science</i> , 2007 , 317, 111-4	33.3	319
276	POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. <i>Science</i> , 2015 , 349, aab3884	33.3	317

(2012-1998)

275	Models of amino acid substitution and applications to mitochondrial protein evolution. <i>Molecular Biology and Evolution</i> , 1998 , 15, 1600-11	8.3	305
274	Proportionally more deleterious genetic variation in European than in African populations. <i>Nature</i> , 2008 , 451, 994-7	50.4	299
273	Greenlandic Inuit show genetic signatures of diet and climate adaptation. <i>Science</i> , 2015 , 349, 1343-7	33.3	298
272	Linkage disequilibrium as a signature of selective sweeps. <i>Genetics</i> , 2004 , 167, 1513-24	4	296
271	Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. <i>Cell</i> , 2015 , 163, 571-82	56.2	294
270	Mapping mutations on phylogenies. Systematic Biology, 2002, 51, 729-39	8.4	289
269	Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). <i>Science</i> , 2009 , 326, 433-6	33.3	277
268	A genomic history of Aboriginal Australia. <i>Nature</i> , 2016 , 538, 207-214	50.4	268
267	Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. <i>Nature Genetics</i> , 2010 , 42, 969-72	36.3	264
266	Convergent evolution of the genomes of marine mammals. <i>Nature Genetics</i> , 2015 , 47, 272-5	36.3	263
265	Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology, 2009, 58, 573-8	35 8.4	263
264	A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. <i>Nature</i> , 2014 , 512, 190-3	50.4	258
263	Simultaneous inference of selection and population growth from patterns of variation in the human genome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7882-7	11.5	254
262	The cost of inbreeding in Arabidopsis. <i>Nature</i> , 2002 , 416, 531-4	50.4	251
261	Unlocking the vault: next-generation museum population genomics. <i>Molecular Ecology</i> , 2013 , 22, 6018-	3 3 .7	250
2 60	Estimation of population parameters and recombination rates from single nucleotide polymorphisms. <i>Genetics</i> , 2000 , 154, 931-42	4	243
259	Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. <i>Cell</i> , 2014 , 157, 785-94	56.2	242
258	SNP calling, genotype calling, and sample allele frequency estimation from New-Generation Sequencing data. <i>PLoS ONE</i> , 2012 , 7, e37558	3.7	242

257	A recent bottleneck of Y chromosome diversity coincides with a global change in culture. <i>Genome Research</i> , 2015 , 25, 459-66	9.7	235
256	Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. <i>Nature</i> , 2014 , 507, 225-8	50.4	235
255	Genomic analyses inform on migration events during the peopling of Eurasia. <i>Nature</i> , 2016 , 538, 238-24	1 2 50.4	234
254	Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. <i>Science</i> , 2014 , 346, 1113-8	33.3	232
253	Ascertainment biases in SNP chips affect measures of population divergence. <i>Molecular Biology and Evolution</i> , 2010 , 27, 2534-47	8.3	232
252	Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. <i>Molecular Biology and Evolution</i> , 2008 , 25, 568-79	8.3	220
251	Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. <i>Nature Biotechnology</i> , 2011 , 29, 1019-23	44.5	219
250	Statistical inferences in phylogeography. <i>Molecular Ecology</i> , 2009 , 18, 1034-47	5.7	219
249	On detecting incomplete soft or hard selective sweeps using haplotype structure. <i>Molecular Biology and Evolution</i> , 2014 , 31, 1275-91	8.3	214
248	Postglacial viability and colonization in North Americaß ice-free corridor. <i>Nature</i> , 2016 , 537, 45-49	50.4	213
247	The genetic prehistory of the New World Arctic. Science, 2014, 345, 1255832	33.3	204
246	Ancient bacteria show evidence of DNA repair. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14401-5	11.5	204
245	The Genetic Cost of Neanderthal Introgression. <i>Genetics</i> , 2016 , 203, 881-91	4	201
244	Targets of balancing selection in the human genome. <i>Molecular Biology and Evolution</i> , 2009 , 26, 2755-6	48.3	199
243	137 ancient human genomes from across the Eurasian steppes. <i>Nature</i> , 2018 , 557, 369-374	50.4	197
242	Prehistoric genomes reveal the genetic foundation and cost of horse domestication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E5661-9	11.5	197
241	Adaptive genic evolution in the Drosophila genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 2271-6	11.5	192
240	Estimating effective paternity number in social insects and the effective number of alleles in a population. <i>Molecular Ecology</i> , 2003 , 12, 3157-64	5.7	189

(2014-2015)

239	Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. <i>Nature Genetics</i> , 2015 , 47, 217-25	36.3	188
238	Taxon sampling and the accuracy of large phylogenies. Systematic Biology, 1998, 47, 702-10	8.4	184
237	Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. <i>Nature</i> , 2018 , 553, 203-207	50.4	178
236	Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. <i>PLoS Genetics</i> , 2010 , 6, e1001157	6	175
235	Inferring demographic history from a spectrum of shared haplotype lengths. <i>PLoS Genetics</i> , 2013 , 9, e10)6 3521	l 172
234	Ancient DNA reveals late survival of mammoth and horse in interior Alaska. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 22352-7	11.5	170
233	Population genetic inference from genomic sequence variation. <i>Genome Research</i> , 2010 , 20, 291-300	9.7	165
232	The first horse herders and the impact of early Bronze Age steppe expansions into Asia. <i>Science</i> , 2018 , 360,	33.3	162
231	Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. <i>Science</i> , 2017 , 358, 659-662	33.3	160
230	Classic selective sweeps revealed by massive sequencing in cattle. <i>PLoS Genetics</i> , 2014 , 10, e1004148	6	158
229	The ancestry and affiliations of Kennewick Man. <i>Nature</i> , 2015 , 523, 455-458	50.4	157
228	Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. <i>BMC Genomics</i> , 2013 , 14, 579	4.5	155
227	ngsTools: methods for population genetics analyses from next-generation sequencing data. <i>Bioinformatics</i> , 2014 , 30, 1486-7	7.2	154
226	Statistical assignment of DNA sequences using Bayesian phylogenetics. <i>Systematic Biology</i> , 2008 , 57, 750-7	8.4	151
225	Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. <i>Science</i> , 2007 , 316, 240-3	33.3	146
224	Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor?. <i>Molecular Biology and Evolution</i> , 2007 , 24, 982-9	8.3	145
223	Quantifying population genetic differentiation from next-generation sequencing data. <i>Genetics</i> , 2013 , 195, 979-92	4	141
222	Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15474-	9 ^{11.5}	140

221	Calculation of Tajimaß D and other neutrality test statistics from low depth next-generation sequencing data. <i>BMC Bioinformatics</i> , 2013 , 14, 289	3.6	140
220	Inference of historical changes in migration rate from the lengths of migrant tracts. <i>Genetics</i> , 2009 , 181, 711-9	4	138
219	The discovery of single-nucleotide polymorphismsand inferences about human demographic history. <i>American Journal of Human Genetics</i> , 2001 , 69, 1332-47	11	138
218	The population history of northeastern Siberia since the Pleistocene. <i>Nature</i> , 2019 , 570, 182-188	50.4	137
217	Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. <i>Molecular Biology and Evolution</i> , 2013 , 30, 1877-88	8.3	137
216	Distinguishing between selective sweeps from standing variation and from a de novo mutation. <i>PLoS Genetics</i> , 2012 , 8, e1003011	6	134
215	Speciation with gene flow in equids despite extensive chromosomal plasticity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18655-60	11.5	133
214	Population size changes reshape genomic patterns of diversity. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 3001-6	3.8	129
213	Genes under positive selection in Escherichia coli. <i>Genome Research</i> , 2007 , 17, 1336-43	9.7	128
212	In defence of model-based inference in phylogeography. <i>Molecular Ecology</i> , 2010 , 19, 436-446	5.7	127
211	Estimation of allele frequency and association mapping using next-generation sequencing data. <i>BMC Bioinformatics</i> , 2011 , 12, 231	3.6	126
21 0	A Likelihood-Ratio Test of Monophyly. <i>Systematic Biology</i> , 1996 , 45, 546-558	8.4	124
209	Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. <i>Molecular Biology and Evolution</i> , 2003 , 20, 1231-9	8.3	123
208	Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. <i>Cell</i> , 2018 , 175, 347-359.e14	56.2	123
207	SweepFinder2: increased sensitivity, robustness and flexibility. <i>Bioinformatics</i> , 2016 , 32, 1895-7	7.2	122
206	Darwinian and demographic forces affecting human protein coding genes. <i>Genome Research</i> , 2009 , 19, 838-49	9.7	122
205	A model-based approach for identifying signatures of ancient balancing selection in genetic data. <i>PLoS Genetics</i> , 2014 , 10, e1004561	6	118
204	Early human dispersals within the Americas. <i>Science</i> , 2018 , 362,	33.3	118

(2002-2005)

203	levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics, 2005, 169, 1639-47	4	117
202	Reconstituting the frequency spectrum of ascertained single-nucleotide polymorphism data. <i>Genetics</i> , 2004 , 168, 2373-82	4	117
201	Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. <i>Theoretical Population Biology</i> , 2003 , 63, 245-55	1.2	113
200	Bacterial natural transformation by highly fragmented and damaged DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 19860-5	11.5	111
199	Statistical approaches for DNA barcoding. Systematic Biology, 2006, 55, 162-9	8.4	111
198	Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. <i>American Journal of Human Genetics</i> , 2013 , 93, 1072-86	11	109
197	Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. <i>PLoS Genetics</i> , 2011 , 7, e1002326	6	107
196	Estimation of 2Nes from temporal allele frequency data. <i>Genetics</i> , 2008 , 179, 497-502	4	107
195	The origin and evolution of maize in the Southwestern United States. <i>Nature Plants</i> , 2015 , 1, 14003	11.5	99
194	Population genetic analysis of ascertained SNP data. <i>Human Genomics</i> , 2004 , 1, 218-24	6.8	95
193	Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. <i>Molecular Ecology</i> , 2004 , 13, 909-19	5.7	93
192	Emergence and Spread of Basal Lineages of Yersinia pestis during the Neolithic Decline. <i>Cell</i> , 2019 , 176, 295-305.e10	56.2	93
191	Evolution of the integral membrane desaturase gene family in moths and flies. <i>Genetics</i> , 2002 , 162, 173	7 ₄ 52	92
190	Detecting recent selective sweeps while controlling for mutation rate and background selection. <i>Molecular Ecology</i> , 2016 , 25, 142-56	5.7	91
189	Statistical approaches to paternity analysis in natural populations and applications to the North Atlantic humpback whale. <i>Genetics</i> , 2001 , 157, 1673-82	4	90
188	Pervasive introgression facilitated domestication and adaptation in the Bos species complex. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1139-1145	12.3	90
187	Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6889-97	11.5	89
186	Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. <i>Journal of Clinical Microbiology</i> , 2002 , 40, 3319-25	9.7	87

185	A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. <i>American Journal of Human Genetics</i> , 2014 , 95, 584-589	11	86
184	The lengths of admixture tracts. <i>Genetics</i> , 2014 , 197, 953-67	4	83
183	Detecting selection in noncoding regions of nucleotide sequences. <i>Genetics</i> , 2004 , 167, 949-58	4	83
182	Physiological and Genetic Adaptations to Diving in Sea Nomads. <i>Cell</i> , 2018 , 173, 569-580.e15	56.2	82
181	Massive haplotypes underlie ecotypic differentiation in sunflowers. <i>Nature</i> , 2020 , 584, 602-607	50.4	81
180	Whole-Exome Sequencing of 2,000 Danish Individuals and the Role of Rare Coding Variants in Type 2 Diabetes. <i>American Journal of Human Genetics</i> , 2014 , 94, 479	11	78
179	The Evolutionary Pathway to Virulence of an RNA Virus. <i>Cell</i> , 2017 , 169, 35-46.e19	56.2	77
178	Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. <i>Genome Research</i> , 2008 , 18, 1020-9	9.7	77
177	A likelihood ratio test for species membership based on DNA sequence data. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2005 , 360, 1969-74	5.8	76
176	Natural selection and the distribution of identity-by-descent in the human genome. <i>Genetics</i> , 2010 , 186, 295-308	4	75
175	An investigation of the statistical power of neutrality tests based on comparative and population genetic data. <i>Molecular Biology and Evolution</i> , 2009 , 26, 273-83	8.3	73
174	Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. <i>Genetic Epidemiology</i> , 2009 , 33, 266-74	2.6	73
173	Microsatellite mutation models: insights from a comparison of humans and chimpanzees. <i>Genetics</i> , 2004 , 168, 383-95	4	73
172	Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. <i>PLoS Genetics</i> , 2013 , 9, e1003530	6	72
171	Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. <i>American Journal of Human Genetics</i> , 2003 , 73, 285-3	010 ¹	72
170	A likelihood approach to populations samples of microsatellite alleles. <i>Genetics</i> , 1997 , 146, 711-6	4	72
169	A Hidden Markov Model Approach for Simultaneously Estimating Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary Ploidy. <i>PLoS Genetics</i> , 2017 , 13, e10	06529	71
168	Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata. <i>Molecular Ecology</i> , 2007 , 16, 1481-95	5.7	70

167	Natural selection reduced diversity on human y chromosomes. <i>PLoS Genetics</i> , 2014 , 10, e1004064	6	69
166	Design of association studies with pooled or un-pooled next-generation sequencing data. <i>Genetic Epidemiology</i> , 2010 , 34, 479-91	2.6	69
165	Modeling gene expression evolution with an extended Ornstein-Uhlenbeck process accounting for within-species variation. <i>Molecular Biology and Evolution</i> , 2014 , 31, 201-11	8.3	68
164	DISCERNING BETWEEN RECURRENT GENE FLOW AND RECENT DIVERGENCE UNDER A FINITE-SITE MUTATION MODEL APPLIED TO NORTH ATLANTIC AND MEDITERRANEAN SEA FIN WHALE (BALAENOPTERA PHYSALUS) POPULATIONS. Evolution; International Journal of Organic Evolution,	3.8	68
163	Genome-wide signatures of complex introgression and adaptive evolution in the big cats. <i>Science Advances</i> , 2017 , 3, e1700299	14.3	67
162	Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system. <i>Journal of Molecular Evolution</i> , 2005 , 60, 315-26	3.1	67
161	Selection on a variant associated with improved viral clearance drives local, adaptive pseudogenization of interferon lambda 4 (IFNL4). <i>PLoS Genetics</i> , 2014 , 10, e1004681	6	66
160	The Power of Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication. <i>Molecular Plant</i> , 2016 , 9, 975-85	14.4	66
159	Parallel adaptation of rabbit populations to myxoma virus. <i>Science</i> , 2019 , 363, 1319-1326	33.3	66
158	Natural selection on the Arabidopsis thaliana genome in present and future climates. <i>Nature</i> , 2019 , 573, 126-129	50.4	63
157	Archaic Adaptive Introgression in TBX15/WARS2. <i>Molecular Biology and Evolution</i> , 2017 , 34, 509-524	8.3	63
156	Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. <i>Current Biology</i> , 2014 , 24, R1035-7	6.3	62
155	Uncovering the genetic history of the present-day Greenlandic population. <i>American Journal of Human Genetics</i> , 2015 , 96, 54-69	11	61
154	Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila. <i>Molecular Biology and Evolution</i> , 2007 , 24, 228-35	8.3	61
153	Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. <i>Genome Research</i> , 2017 , 27, 1029-1038	9.7	60
152	Estimating inbreeding coefficients from NGS data: Impact on genotype calling and allele frequency estimation. <i>Genome Research</i> , 2013 , 23, 1852-61	9.7	59
151	Adaptionism-30 years after Gould and Lewontin. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 2487-90	3.8	58
150	De novo assembly of a haplotype-resolved human genome. <i>Nature Biotechnology</i> , 2015 , 33, 617-22	44.5	57

149	Fast phylogenetic DNA barcoding. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2008 , 363, 3997-4002	5.8	57
148	A maximum likelihood method for analyzing pseudogene evolution: implications for silent site evolution in humans and rodents. <i>Molecular Biology and Evolution</i> , 2002 , 19, 110-7	8.3	55
147	Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans. <i>American Journal of Human Genetics</i> , 2017 , 101, 752-767	11	53
146	Evidence for positive selection on a number of MicroRNA regulatory interactions during recent human evolution. <i>PLoS Genetics</i> , 2012 , 8, e1002578	6	52
145	Error-prone polymerase activity causes multinucleotide mutations in humans. <i>Genome Research</i> , 2014 , 24, 1445-54	9.7	51
144	Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18064-8	11.5	51
143	Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes. <i>Molecular Biology and Evolution</i> , 2017 , 34, 1307-1318	8.3	50
142	Detecting coevolving amino acid sites using Bayesian mutational mapping. <i>Bioinformatics</i> , 2005 , 21 Suppl 1, i126-35	7.2	49
141	Phylogenetic ANOVA: The Expression Variance and Evolution Model for Quantitative Trait Evolution. <i>Systematic Biology</i> , 2015 , 64, 695-708	8.4	47
140	A genome-wide scan for signatures of directional selection in domesticated pigs. <i>BMC Genomics</i> , 2015 , 16, 130	4.5	47
139	CCR5-B2 is deleterious in the homozygous state in humans. <i>Nature Medicine</i> , 2019 , 25, 909-910	50.5	46
138	The age of nonsynonymous and synonymous mutations in animal mtDNA and implications for the mildly deleterious theory. <i>Genetics</i> , 1999 , 153, 497-506	4	46
137	Origins and genetic legacies of the Caribbean Taino. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2341-2346	11.5	45
136	Likelihood analysis of ongoing gene flow and historical association. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 44-50	3.8	45
135	The Genetic Basis of Adaptation following Plastic Changes in Coloration in a Novel Environment. <i>Current Biology</i> , 2018 , 28, 2970-2977.e7	6.3	45
134	Maximum likelihood estimation of population divergence times and population phylogenies under the infinite sites model. <i>Theoretical Population Biology</i> , 1998 , 53, 143-51	1.2	44
133	Effect of nonindependent substitution on phylogenetic accuracy. Systematic Biology, 1999, 48, 317-28	8.4	44
132	The effect of ancient DNA damage on inferences of demographic histories. <i>Molecular Biology and Evolution</i> , 2008 , 25, 2181-7	8.3	41

(2010-2014)

131	Genome-wide ancestry patterns in Rapanui suggest pre-European admixture with Native Americans. <i>Current Biology</i> , 2014 , 24, 2518-25	6.3	39
130	Patterns of mutation and selection at synonymous sites in Drosophila. <i>Molecular Biology and Evolution</i> , 2007 , 24, 2687-97	8.3	39
129	Investigate the origins of COVID-19. <i>Science</i> , 2021 , 372, 694	33.3	39
128	Costs and benefits of mutational robustness in RNA viruses. <i>Cell Reports</i> , 2014 , 8, 1026-36	10.6	38
127	A method for detecting IBD regions simultaneously in multiple individualswith applications to disease genetics. <i>Genome Research</i> , 2011 , 21, 1168-80	9.7	38
126	Maximum likelihood and Bayesian methods for estimating the distribution of selective effects among classes of mutations using DNA polymorphism data. <i>Theoretical Population Biology</i> , 2003 , 63, 91-103	1.2	38
125	Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. <i>Nature Communications</i> , 2018 , 9, 1276	17.4	37
124	Population genomics of the Viking world. <i>Nature</i> , 2020 , 585, 390-396	50.4	35
123	Human Disease Variation in the Light of Population Genomics. <i>Cell</i> , 2019 , 177, 115-131	56.2	34
122	In defense of statistical methods for detecting positive selection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E95; author reply E96	11.5	34
121	MAXIMUM-LIKELIHOOD ESTIMATION OF POPULATION DIVERGENCE TIMES AND POPULATION PHYLOGENY IN MODELS WITHOUT MUTATION. <i>Evolution; International Journal of Organic Evolution</i> , 1998 , 52, 669-677	3.8	34
120	Synonymous mutations and the molecular evolution of SARS-CoV-2 brigins. Virus Evolution, 2021, 7, vea	аа0 9 8	34
119	Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. <i>PLoS Genetics</i> , 2019 , 15, e1008119	6	33
118	Human adaptation to extreme environmental conditions. <i>Current Opinion in Genetics and Development</i> , 2018 , 53, 77-82	4.9	32
117	The impact of founder events on chromosomal variability in multiply mating species. <i>Molecular Biology and Evolution</i> , 2008 , 25, 1728-36	8.3	32
116	Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25172-25178	11.5	32
115	bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). <i>Bioinformatics</i> , 2014 , 30, 2962-4	7.2	31
114	Positive selection on apoptosis related genes. <i>FEBS Letters</i> , 2010 , 584, 469-76	3.8	31

113	REPdenovo: Inferring De Novo Repeat Motifs from Short Sequence Reads. <i>PLoS ONE</i> , 2016 , 11, e01507	19 .7	30
112	Fast admixture analysis and population tree estimation for SNP and NGS data. <i>Bioinformatics</i> , 2017 , 33, 2148-2155	7.2	29
111	Genomic Takeover by Transposable Elements in the Strawberry Poison Frog. <i>Molecular Biology and Evolution</i> , 2018 , 35, 2913-2927	8.3	27
110	Correcting estimators of theta and Tajimaß D for ascertainment biases caused by the single-nucleotide polymorphism discovery process. <i>Genetics</i> , 2009 , 181, 701-10	4	27
109	Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex. <i>Genome Biology and Evolution</i> , 2015 , 7, 3116-31	3.9	26
108	Looking for Darwin in genomic sequencesvalidity and success of statistical methods. <i>Molecular Biology and Evolution</i> , 2012 , 29, 2889-93	8.3	26
107	An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. <i>PLoS Genetics</i> , 2019 , 15, e1008384	6	25
106	Site-by-site estimation of the rate of substitution and the correlation of rates in mitochondrial DNA. <i>Systematic Biology</i> , 1997 , 46, 346-53	8.4	24
105	Maximum-Likelihood Estimation of Population Divergence Times and Population Phylogeny in Models without Mutation. <i>Evolution; International Journal of Organic Evolution</i> , 1998 , 52, 669	3.8	24
104	Identification of physicochemical selective pressure on protein encoding nucleotide sequences. <i>BMC Bioinformatics</i> , 2006 , 7, 148	3.6	24
103	A Population Phylogenetic View of Mitochondrial Heteroplasmy. <i>Genetics</i> , 2018 , 208, 1261-1274	4	23
102	Variation and association to diabetes in 2000 full mtDNA sequences mined from an exome study in a Danish population. <i>European Journal of Human Genetics</i> , 2014 , 22, 1040-5	5.3	23
101	Single-locus tests of microsatellite evolution: multi-step mutations and constraints on allele size. <i>Molecular Phylogenetics and Evolution</i> , 1999 , 11, 477-84	4.1	23
100	Estimating IBD tracts from low coverage NGS data. <i>Bioinformatics</i> , 2016 , 32, 2096-102	7.2	23
99	Variation in the pattern of nucleotide substitution across sites. <i>Journal of Molecular Evolution</i> , 1999 , 48, 86-93	3.1	21
98	VolcanoFinder: Genomic scans for adaptive introgression. <i>PLoS Genetics</i> , 2020 , 16, e1008867	6	20
97	Detecting adaptive trait loci in nonmodel systems: divergence or admixture mapping?. <i>Molecular Ecology</i> , 2013 , 22, 6131-48	5.7	20
96	Genetic rescue and the maintenance of native ancestry. Conservation Genetics, 2019, 20, 59-64	2.6	19

95	Assessing Uncertainty in the Rooting of the SARS-CoV-2 Phylogeny. <i>Molecular Biology and Evolution</i> , 2021 , 38, 1537-1543	8.3	19
94	Disentangling selection on genetically correlated polygenic traits via whole-genome genealogies. <i>American Journal of Human Genetics</i> , 2021 , 108, 219-239	11	19
93	Estimating the Timing of Multiple Admixture Pulses During Local Ancestry Inference. <i>Genetics</i> , 2018 , 210, 1089-1107	4	19
92	Discerning between recurrent gene flow and recent divergence under a finite-site mutation model applied to North Atlantic and Mediterranean Sea fin whale (Balaenoptera physalus) populations. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 670-5	3.8	19
91	The mind, the lab, and the field: Three kinds of populations in scientific practice. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2015 , 52, 12-21	0.6	18
90	Novel method to identify source-associated phylogenetic clustering shows that Listeria monocytogenes includes niche-adapted clonal groups with distinct ecological preferences. <i>Journal of Clinical Microbiology</i> , 2006 , 44, 3742-51	9.7	18
89	Bayesian estimation of genomic distance. <i>Genetics</i> , 2004 , 166, 621-9	4	18
88	Bayesian estimation of the number of inversions in the history of two chromosomes. <i>Journal of Computational Biology</i> , 2002 , 9, 805-18	1.7	18
87	Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. <i>Genome Biology and Evolution</i> , 2018 , 10, 967-975	3.9	17
86	Statistical Methods in Molecular Evolution 2005,		17
86 85	Statistical Methods in Molecular Evolution 2005, Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001, 159, 401-11	4	17
	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and	8.3	
85	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001 , 159, 401-11 Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids.		17
85 84	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001 , 159, 401-11 Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. <i>Molecular Biology and Evolution</i> , 2020 , 37, 2616-2629 A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in	8.3	17 16 16
85 84 83	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001 , 159, 401-11 Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. <i>Molecular Biology and Evolution</i> , 2020 , 37, 2616-2629 A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in proteasome genes. <i>Molecular Biology and Evolution</i> , 2013 , 30, 1808-15 Evolutionary genomics: detecting selection needs comparative data. <i>Nature</i> , 2005 , 433, E6;	8. ₃	17 16 16
85 84 83 82	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001 , 159, 401-11 Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. <i>Molecular Biology and Evolution</i> , 2020 , 37, 2616-2629 A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in proteasome genes. <i>Molecular Biology and Evolution</i> , 2013 , 30, 1808-15 Evolutionary genomics: detecting selection needs comparative data. <i>Nature</i> , 2005 , 433, E6; discussion E7-8	8.3 8.3 50.4	17 16 16
85 84 83 82 81	Mutations as missing data: inferences on the ages and distributions of nonsynonymous and synonymous mutations. <i>Genetics</i> , 2001 , 159, 401-11 Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. <i>Molecular Biology and Evolution</i> , 2020 , 37, 2616-2629 A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in proteasome genes. <i>Molecular Biology and Evolution</i> , 2013 , 30, 1808-15 Evolutionary genomics: detecting selection needs comparative data. <i>Nature</i> , 2005 , 433, E6; discussion E7-8 Composite likelihood method for inferring local pedigrees. <i>PLoS Genetics</i> , 2017 , 13, e1006963 Exploring variation in the d(N)/d(S) ratio among sites and lineages using mutational mappings:	8.3 8.3 50.4	17 16 16 16

77	Synonymous mutations and the molecular evolution of SARS-Cov-2 origins		13
76	Pronounced somatic bottleneck in mitochondrial DNA of human hair. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190175	5.8	13
75	Is haplotype block identification useful for association mapping studies?. <i>Genetic Epidemiology</i> , 2004 , 27, 80-3	2.6	12
74	On the Distribution of Tract Lengths During Adaptive Introgression. <i>G3: Genes, Genomes, Genetics</i> , 2020 , 10, 3663-3673	3.2	12
73	The history and evolution of the Denisovan-haplotype in Tibetans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	12
72	Robustness of the estimator of the index of dispersion for DNA sequences. <i>Molecular Phylogenetics and Evolution</i> , 1997 , 7, 346-51	4.1	11
71	Ohana: detecting selection in multiple populations by modelling ancestral admixture components		11
70	The genetic architecture of sporadic and multiple consecutive miscarriage. <i>Nature Communications</i> , 2020 , 11, 5980	17.4	11
69	Evolution of GOUNDRY, a cryptic subgroup of Anopheles hambiae l.l., and its impact on susceptibility to Plasmodium infection. <i>Molecular Ecology</i> , 2016 , 25, 1494-510	5.7	11
68	Estimating population divergence time and phylogeny from single-nucleotide polymorphisms data with outgroup ascertainment bias. <i>Molecular Ecology</i> , 2012 , 21, 974-86	5.7	10
67	Dependence of paracentric inversion rate on tract length. BMC Bioinformatics, 2007, 8, 115	3.6	10
66	The Genetic cost of Neanderthal introgression		10
65	No statistical evidence for an effect of CCR5-B2 on lifespan in the UK Biobank cohort. <i>Nature Medicine</i> , 2020 , 26, 178-180	50.5	10
64	Passage Adaptation Correlates With the Reduced Efficacy of the Influenza Vaccine. <i>Clinical Infectious Diseases</i> , 2019 , 69, 1198-1204	11.6	10
63	A Bayesian multilocus association method: allowing for higher-order interaction in association studies. <i>Genetics</i> , 2007 , 176, 1197-208	4	8
62	Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models. <i>Bioinformatics</i> , 2007 , 23, 2031-7	7.2	8
61	Massive haplotypes underlie ecotypic differentiation in sunflowers		8
60	Number of genes controlling a quantitative trait in a hybrid zone of the aposematic frog Ranitomeya imitator. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20141950	4.4	7

59	Evolution. Why sex?. <i>Science</i> , 2006 , 311, 960-1	33.3	7	
58	LIKELIHOOD ANALYSIS OF ONGOING GENE FLOW AND HISTORICAL ASSOCIATION. <i>Evolution;</i> International Journal of Organic Evolution, 2000 , 54, 44	3.8	7	
57	Understanding Admixture Fractions		7	
56	VolcanoFinder: genomic scans for adaptive introgression		7	
55	A likelihood method for estimating present-day human contamination in ancient male samples using low-depth X-chromosome data. <i>Bioinformatics</i> , 2020 , 36, 828-841	7.2	7	
54	Q&A: who is H. sapiens really, and how do we know?. <i>BMC Biology</i> , 2011 , 9, 20	7.3	6	
53	Detecting selection in multiple populations by modelling ancestral admixture components. <i>Molecular Biology and Evolution</i> , 2021 ,	8.3	6	
52	Inferring Adaptive Introgression Using Hidden Markov Models. <i>Molecular Biology and Evolution</i> , 2021 , 38, 2152-2165	8.3	6	
51	On the number of siblings and p-th cousins in a large population sample. <i>Journal of Mathematical Biology</i> , 2018 , 77, 1279-1298	2	5	
50	Detecting Natural Selection 2019 , 397-40		5	
49	DISCERNING BETWEEN RECURRENT GENE FLOW AND RECENT DIVERGENCE UNDER A FINITE-SITE MUTATION MODEL APPLIED TO NORTH ATLANTIC AND MEDITERRANEAN SEA FIN WHALE (BALAENOPTERA PHYSALUS) POPULATIONS. Evolution; International Journal of Organic Evolution,	3.8	5	
48	2004 , 58, 670 On the Number of Siblings and p-th Cousins in a Large Population Sample		5	
47	Disentangling selection on genetically correlated polygenic traits using whole-genome genealogies		5	
46	Bayesian and maximum likelihood estimation of genetic maps. <i>Genetical Research</i> , 2005 , 85, 159-68	1.1	4	
45	The history and evolution of the Denisovan-EPAS1haplotype in Tibetans		4	
44	A Bayesian Framework for Inferring the Influence of Sequence Context on Point Mutations. <i>Molecular Biology and Evolution</i> , 2020 , 37, 893-903	8.3	4	
43	Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. <i>Trends in Ecology and Evolution</i> , 2021 , 36, 637-650	10.9	4	
42	Joint Estimation of Pedigrees and Effective Population Size Using Markov Chain Monte Carlo. <i>Genetics</i> , 2019 , 212, 855-868	4	3	

41	Phenotypic Convergence Is Not Mirrored at the Protein Level in a Lizard Adaptive Radiation. <i>Molecular Biology and Evolution</i> , 2020 , 37, 1604-1614	8.3	3
40	Retraction Note: CCR5-B2 is deleterious in the homozygous state in humans. <i>Nature Medicine</i> , 2019 , 25, 1796	50.5	3
39	Archaeology Augments Tibetß Genetic HistoryResponse. <i>Science</i> , 2010 , 329, 1467-1468	33.3	3
38	Archaic adaptive introgression in TBX15/WARS2		3
37	A map of climate change-driven natural selection in Arabidopsis thaliana		3
36	Estimating the timing of multiple admixture events using 3-locus Linkage Disequilibrium		3
35	The genomics of mimicry: Gene expression throughout development provides insights into convergent and divergent phenotypes in a Mllerian mimicry system. <i>Molecular Ecology</i> , 2021 , 30, 4039-4	40g1	3
34	Q&A: Where did the Neanderthals go?. <i>BMC Biology</i> , 2017 , 15, 73	7.3	2
33	Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. <i>Communications Biology</i> , 2021 , 4, 1307	6.7	2
32	On the distribution of tract lengths during adaptive introgression		2
31	Inferring Adaptive Introgression Using Hidden Markov Models		2
30	Population genomics of the Viking world		2
29	Deviations from Hardy Weinberg Equilibrium at CCR5-B2 in Large Sequencing Data Sets		2
28	Selection on the FADS region in Europeans		2
27	Inferring the ancestry of parents and grandparents from genetic data. <i>PLoS Computational Biology</i> , 2020 , 16, e1008065	5	2
26	Covariance of pairwise differences on a multi-species coalescent tree and implications for <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2022 , 377, 20200415	5.8	2
25	Fitting the Balding-Nichols model to forensic databases. <i>Forensic Science International: Genetics</i> , 2015 , 19, 86-91	4.3	1
24	AncestralClust: Clustering of Divergent Nucleotide Sequences by Ancestral Sequence Reconstruction using Phylogenetic Trees. <i>Bioinformatics</i> , 2021 ,	7.2	1

23	REDUCING AN INTELLECTUAL DEFICIT: COALESCENT THEORY FOR (ALMOST) EVERYONE1. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 208	3.8	1
22	Low Pass Genomes of 141,431 Chinese Reveal Patterns of Viral Infection, Novel Phenotypic Associations, and the Genetic History of China. <i>SSRN Electronic Journal</i> ,	1	1
21	An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data		1
20	Association Mapping for Compound Heterozygous Traits Using Phenotypic Distance and Integer Programming. <i>Lecture Notes in Computer Science</i> , 2015 , 136-147	0.9	1
19	Ohana, a tool set for population genetic analyses of admixture components		1
18	Composite Likelihood Method for Inferring Local Pedigrees		1
17	The population history of northeastern Siberia since the Pleistocene		1
16	A likelihood method for estimating present-day human contamination in ancient DNA samples using low-depth haploid chromosome data		1
15	Divergence, gene flow, and the origin of leapfrog geographic distributions: The history of colour pattern variation in Phyllobates poison-dart frogs. <i>Molecular Ecology</i> , 2020 , 29, 3702-3719	5.7	1
14	Convergent evolution of increased urine-concentrating ability in desert mammals. <i>Mammal Review</i> , 2021 , 51, 482-491	5	1
13	Human-Mediated Admixture and Selection Shape the Diversity on the Modern Swine (Sus scrofa) Y Chromosomes. <i>Molecular Biology and Evolution</i> , 2021 , 38, 5051-5065	8.3	1
12	Novel Form of Alternative Splicing of NFKB1. Its Role in Polycythemia and Adaptation to High Altitude in Andean Aymara. <i>Blood</i> , 2018 , 132, 2316-2316	2.2	О
11	The distribution of waiting distances in ancestral recombination graphs. <i>Theoretical Population Biology</i> , 2021 , 141, 34-43	1.2	Ο
10	The Tibetan-Yi region is both a corridor and a barrier for human gene flow Cell Reports, 2022, 39, 1107	21 0.6	О
9	Introduction: Genomics and philosophy of race. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2015 , 52, 1-4	0.6	
8	Detecting Selection in Protein Coding Genes Using the Rate of Nonsynonymous and Synonymous Divergence 2002 , 253-267		
7	Fumio Tajima and the Origin of Modern Population Genetics. <i>Genetics</i> , 2016 , 204, 389-390	4	
6	The Historic Split and Merger of Gene Trees and Species Trees334-342		

_	Inferring person-to-person networks of Plasmodium falciparum transmission: are analyses of	
5	routine surveillance data up to the task?. Malaria Journal, 2022, 21, 58	

3.6

- VolcanoFinder: Genomic scans for adaptive introgression **2020**, 16, e1008867
- 3 VolcanoFinder: Genomic scans for adaptive introgression **2020**, 16, e1008867
- VolcanoFinder: Genomic scans for adaptive introgression **2020**, 16, e1008867
- VolcanoFinder: Genomic scans for adaptive introgression **2020**, 16, e1008867