
Kun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7426139/publications.pdf Version: 2024-02-01

Κυν Ζηλο

#	Article	IF	CITATIONS
1	Perovskite-type oxides LaFe1â^Co O3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Applied Energy, 2016, 168, 193-203.	5.1	197
2	The use of La1â^'xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane. Fuel, 2013, 108, 465-473.	3.4	155
3	Impact of Torrefaction on the Chemical Structure and Catalytic Fast Pyrolysis Behavior of Hemicellulose, Lignin, and Cellulose. Energy & Fuels, 2015, 29, 8027-8034.	2.5	135
4	Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 3243-3252.	3.8	121
5	Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier. Bioresource Technology, 2013, 140, 138-145.	4.8	118
6	Biomass Char Direct Chemical Looping Gasification Using NiO-Modified Iron Ore as an Oxygen Carrier. Energy & Fuels, 2014, 28, 183-191.	2.5	118
7	Chemical looping gasification of biomass char using iron ore as an oxygen carrier. International Journal of Hydrogen Energy, 2016, 41, 17871-17883.	3.8	116
8	Exploration of the mechanism of chemical looping steam methane reforming using double perovskite-type oxides La1.6Sr0.4FeCoO6. Applied Catalysis B: Environmental, 2017, 219, 672-682.	10.8	105
9	Performance of Fe–Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10ÂkWth interconnected circulating fluidized bed reactor. International Journal of Hydrogen Energy, 2015, 40, 16021-16032.	3.8	96
10	Synergistic improvements in stability and performance of the double perovskite-type oxides La2â°xSrxFeCoO6 for chemical looping steam methane reforming. Applied Energy, 2017, 197, 393-404.	5.1	88
11	Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis. International Journal of Hydrogen Energy, 2019, 44, 4674-4687.	3.8	87
12	Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods. Energy Conversion and Management, 2018, 168, 60-73.	4.4	85
13	Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier. Energy, 2017, 141, 1836-1844.	4.5	75
14	Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification. Applied Energy, 2020, 260, 114315.	5.1	75
15	Biomass chemical-looping gasification coupled with water/CO2-splitting using NiFe2O4 as an oxygen carrier. Energy Conversion and Management, 2019, 201, 112157.	4.4	70
16	Continuous Operation of a 10 kW _{th} Chemical Looping Integrated Fluidized Bed Reactor for Gasifying Biomass Using an Iron-Based Oxygen Carrier. Energy & Fuels, 2015, 29, 233-241.	2.5	68
17	Exploration of Reaction Mechanisms on Hydrogen Production through Chemical Looping Steam Reforming Using NiFe ₂ O ₄ Oxygen Carrier. ACS Sustainable Chemistry and Engineering, 2019, 7, 11621-11632.	3.2	68
18	Exploring the migration and transformation of lattice oxygen during chemical looping with NiFe2O4 oxygen carrier. Chemical Engineering Journal, 2022, 429, 132064.	6.6	63

Κυν Ζηλο

#	Article	IF	CITATIONS
19	La1-xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: Identification of the surface elements and redox cyclic performance. International Journal of Hydrogen Energy, 2019, 44, 10265-10276.	3.8	61
20	A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane. Science Advances, 2020, 6, eaaz9339.	4.7	61
21	Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane. Chinese Journal of Catalysis, 2013, 34, 1242-1249.	6.9	57
22	Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment. Energy, 2020, 192, 116620.	4.5	53
23	La1-xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas. Chinese Journal of Catalysis, 2014, 35, 1196-1205.	6.9	49
24	Synthesis gas production from chemical looping gasification of lignite by using hematite as oxygen carrier. Energy Conversion and Management, 2019, 185, 774-782.	4.4	47
25	Reaction schemes of barium ferrite in biomass chemical looping gasification for hydrogen-enriched syngas generation via an outer-inner looping redox reaction mechanism. Energy Conversion and Management, 2019, 189, 81-90.	4.4	45
26	In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier. Energy, 2020, 190, 116360.	4.5	44
27	Different oxidation routes for lattice oxygen recovery of double-perovskite type oxides LaSrFeCoO 6 as oxygen carriers for chemical looping steam methane reforming. Journal of Energy Chemistry, 2017, 26, 501-509.	7.1	40
28	Enhanced Chemical looping oxidative coupling of methane by Na-doped LaMnO3 redox catalysts. Fuel, 2021, 299, 120932.	3.4	39
29	Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors. Energy Conversion and Management, 2019, 179, 304-313.	4.4	38
30	Perovskite-type LaFe1â^' x Mn x O3 (x=0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical-looping steam methane reforming: Oxidation activity and resistance to carbon formation. Korean Journal of Chemical Engineering, 2017, 34, 1651-1660.	1.2	37
31	Effects of catalyst preparation parameters and reaction operating conditions on the activity and stability of thermally fused Fe-olivine catalyst in the steam reforming of toluene. International Journal of Hydrogen Energy, 2018, 43, 127-138.	3.8	34
32	Hydrogen production from vegetable oil via a chemical looping process with hematite oxygen carriers. Journal of Cleaner Production, 2018, 200, 588-597.	4.6	34
33	Preparation of double perovskite-type oxide LaSrFeCoO6 for chemical looping steam methane reforming to produce syngas and hydrogen. Journal of Rare Earths, 2016, 34, 1032-1041.	2.5	33
34	Effects of Co-substitution on the reactivity of double perovskite oxides LaSrFe2-xCoxO6 for the chemical-looping steam methane reforming. Journal of the Energy Institute, 2019, 92, 594-603.	2.7	30
35	The structure-reactivity relationships of using three-dimensionally ordered macroporous LaFe1â^xNixO3 perovskites for chemical-looping steam methane reforming. Journal of the Energy Institute, 2019, 92, 239-246.	2.7	30
36	Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane. Applied Catalysis A: General, 2021, 609, 117910.	2.2	29

ΚυΝ ΖΗΑΟ

#	Article	IF	CITATIONS
37	The role of CuO modified La0·7Sr0·3FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme. International Journal of Hydrogen Energy, 2020, 45, 4073-4083.	3.8	28
38	Experimental Investigation of Fe–Ni–Al Oxygen Carrier Derived from Hydrotalcite-like Precursors for the Chemical Looping Gasification of Biomass Char. Energy & Fuels, 2017, 31, 5174-5182.	2.5	25
39	Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting. Energy, 2021, 215, 119044.	4.5	24
40	Enhanced hydrogen-rich syngas generation in chemical looping methane reforming using an interstitial doped La1.6Sr0.4FeCoO6. International Journal of Hydrogen Energy, 2019, 44, 10250-10264.	3.8	23
41	Long-term coal chemical looping gasification using a bimetallic oxygen carrier of natural hematite and copper ore. Fuel, 2022, 309, 122106.	3.4	19
42	Effect of microwave-assisted organosolv fractionation on the chemical structure and decoupling pyrolysis behaviors of waste biomass. Journal of Analytical and Applied Pyrolysis, 2018, 131, 120-127.	2.6	15
43	Performance evaluation of hematite oxygen carriers in high purity hydrogen generation from cooking oil by chemical looping reaction. International Journal of Hydrogen Energy, 2018, 43, 20500-20512.	3.8	15
44	Mg-doped La1.6Sr0.4FeCoO6 for anaerobic oxidative dehydrogenation of ethane using surface-absorbed oxygen with tuned electronic structure. Fuel Processing Technology, 2021, 216, 106771.	3.7	14
45	Investigation of the relationship between electronic properties and reactivity of 3DOM LaFe _{1 â^² <i>x</i>} Co _{<i>x</i>} O ₃ for methane reforming to produce syngas. International Journal of Energy Research, 2019, 43, 7120.	2.2	13
46	Reactivity investigation on chemical looping gasification of coal with Iron-Manganese based oxygen carrier. Fuel, 2022, 307, 121772.	3.4	13
47	Selective sequential fractionation of biomass for quantitatively elucidating the compositional factors affecting biomass fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105106.	2.6	12
48	Co-production of syngas and H2 from chemical looping steam reforming of methane over anti-coking CeO2/La0.9Sr0.1Fe1â^'xNixO3 composite oxides. Fuel, 2022, 317, 123455.	3.4	10
49	Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane. Journal of Fuel Chemistry and Technology, 2016, 44, 1168-1176.	0.9	8
50	CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane. Journal of Fuel Chemistry and Technology, 2016, 44, 680-688.	0.9	8
51	Syngas production from lignite via chemical looping gasification with hematite oxygen carrier enhanced by exogenous metals. Fuel, 2022, 321, 124119.	3.4	8
52	Fast Pyrolysis of Nitrogen-Rich Wood Waste Pretreated by Microwave-Assisted Glycerolysis. Waste and Biomass Valorization, 2017, 8, 349-358.	1.8	3
53	Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature. Energy, 2022, 254, 124245.	4.5	3