
Li Na Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/742589/publications.pdf Version: 2024-02-01

Ιι ΝΑ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	7.1	839
2	The Toxicity of Amyloid ß Oligomers. International Journal of Molecular Sciences, 2012, 13, 7303-7327.	4.1	124
3	The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathologica, 2014, 127, 507-522.	7.7	108
4	The Effect of Curcumin on the Stability of Aβ Dimers. Journal of Physical Chemistry B, 2012, 116, 7428-7435.	2.6	92
5	Amyloid β Peptides Aggregation in a Mixed Membrane Bilayer: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2011, 115, 12247-12256.	2.6	66
6	Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene, 2021, 40, 2339-2354.	5.9	36
7	In-Silico Identified New Natural Sortase A Inhibitors Disrupt S. aureus Biofilm Formation. International Journal of Molecular Sciences, 2020, 21, 8601.	4.1	29
8	Exploring the Catalytic Mechanism of Cas9 Using Information Inferred from Endonuclease VII. ACS Catalysis, 2019, 9, 1329-1336.	11.2	26
9	Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS Journal, 2023, 290, 620-648.	4.7	22
10	Heme prevents amyloid beta peptide aggregation through hydrophobic interaction based on molecular dynamics simulation. Physical Chemistry Chemical Physics, 2013, 15, 14098-14106.	2.8	18
11	Exploring alternative catalytic mechanisms of the Cas9 HNH domain. Proteins: Structure, Function and Bioinformatics, 2020, 88, 260-264.	2.6	17
12	Alzheimer's Disease—A Panorama Glimpse. International Journal of Molecular Sciences, 2014, 15, 12631-12650.	4.1	14
13	Highly sensitive inference of time-delayed gene regulation by network deconvolution. BMC Systems Biology, 2014, 8, S6.	3.0	12
14	Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARÎ ³ -bound fatty acids. Archives of Toxicology, 2021, 95, 355-374.	4.2	10
15	S100A9 induces aggregation-prone conformation in Abeta peptides: a combined experimental and simulation study. RSC Advances, 2013, 3, 24081.	3.6	9
16	Cascading proton transfers are a hallmark of the catalytic mechanism of SAMâ€dependent methyltransferases. FEBS Letters, 2020, 594, 2128-2139.	2.8	8
17	Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folateâ€mediated oneâ€carbon pathway. FEBS Journal, 2023, 290, 2279-2291.	4.7	7
18	Directed Computational Evolution of Quorum-Quenching Lactonases from the Amidohydrolase Superfamily. Structure, 2020, 28, 635-642.e3.	3.3	5

Li Να Ζήαο

#	Article	IF	CITATIONS
19	Generalized logical model based on network topology to capture the dynamical trends of cellular signaling pathways. BMC Systems Biology, 2016, 10, 7.	3.0	2
20	Histidine protonation states are key in the Ligl catalytic reaction mechanism. Proteins: Structure, Function and Bioinformatics, 2021, , .	2.6	2
21	The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Computational Biology, 2022, 18, e1010140.	3.2	2
22	Explicit Soliton and Periodic Solutions to Three-Wave System with Quadratic and Cubic Nonlinearities. Communications in Theoretical Physics, 2011, 55, 676-680.	2.5	1
23	An Investigation on the Fundamental Interaction between Abeta Peptides and the AT-Rich DNA. Journal of Physical Chemistry B, 2015, 119, 8247-8259.	2.6	1