
Luigi Mandolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7425570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ring closure reactions of bifunctional chain molecules. Accounts of Chemical Research, 1981, 14, 95-102.	15.6	881
2	The Role of Ring Strain on the Ease of Ring Closure of Bifunctional Chain Molecules. European Journal of Organic Chemistry, 2000, 2000, 3117-3125.	2.4	308
3	Macrocyclization under thermodynamic control. A theoretical study and its application to the equilibrium cyclooligomerization of .betapropiolactone. Journal of the American Chemical Society, 1993, 115, 3901-3908.	13.7	186
4	Fast transimination in organic solvents in the absence of proton and metal catalysts. A key to imine metathesis catalyzed by primary amines under mild conditions. Chemical Science, 2013, 4, 2253.	7.4	174
5	Effective Molarities in Supramolecular Catalysis of Two-Substrate Reactions. Accounts of Chemical Research, 2004, 37, 113-122.	15.6	140
6	Ring-closure reactions. 22. Kinetics of cyclization of diethyl (.omegabromoalkyl)malonates in the range of 4- to 21-membered rings. Role of ring strain. Journal of the American Chemical Society, 1984, 106, 1051-1056.	13.7	135
7	Metathesis Reaction of Formaldehyde Acetals:Â An Easy Entry into the Dynamic Covalent Chemistry of Cyclophane Formation. Journal of the American Chemical Society, 2005, 127, 13666-13671.	13.7	117
8	Coupling of the Decarboxylation of 2â€Cyanoâ€2â€phenylpropanoic Acid to Largeâ€Amplitude Motions: A Convenient Fuel for an Acid–Baseâ€Operated Molecular Switch. Angewandte Chemie - International Edition, 2016, 55, 6997-7001.	13.8	74
9	Effective catalysis of imine metathesis by means of fast transiminations between aromatic–aromatic or aromatic–aliphatic amines. Organic and Biomolecular Chemistry, 2014, 12, 3282-3287.	2.8	65
10	Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch. Chemical Science, 2018, 9, 181-188.	7.4	49
11	Ring-closure reactions. 9. Kinetics of ring formation from .omicronomegabromoalkoxy phenoxides and .omicronomegabromoalkyl phenoxides in the range of 11- to 24-membered rings. A comparison with related cyclization series. Journal of the American Chemical Society, 1977, 99, 6308-6312.	13.7	35
12	Macrocyclization under Kinetic Control. A Theoretical Study and Its Application to the Synthesis of Macrocyclic Poly(thiolactones). Journal of the American Chemical Society, 1994, 116, 7081-7087.	13.7	35
13	Ring-Opening Metathesis Polymerization of a Diolefinic [2]-Catenane–Copper(I) Complex: An Easy Route to Polycatenanes. Macromolecules, 2015, 48, 1358-1363.	4.8	35
14	Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; <i>gem</i> -Dialkyl Effect on Catalytic Efficiency. Journal of Organic Chemistry, 2013, 78, 7259-7263.	3.2	34
15	Target-induced amplification in a dynamic library of macrocycles. A quantitative study. New Journal of Chemistry, 2012, 36, 40-43.	2.8	32
16	Photoinduced Release of a Chemical Fuel for Acid–Baseâ€Operated Molecular Machines. Chemistry - A European Journal, 2018, 24, 10122-10127.	3.3	32
17	Copper(<scp>i</scp>)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes. Organic and Biomolecular Chemistry, 2014, 12, 6167-6174.	2.8	30
18	Metathesis Reactions of Formaldehyde Acetals – Experimental and Computational Investigation of Isomeric Families of Cyclophanes under Dynamic Conditions. European Journal of Organic Chemistry, 2008, 2008, 186-195.	2.4	28

Luigi Mandolini

#	Article	IF	CITATIONS
19	Applications of dynamic combinatorial chemistry for the determination of effective molarity. Chemical Science, 2015, 6, 144-151.	7.4	28
20	Highly efficient intramolecular Cannizzaro reaction between 1,3-distal formyl groups at the upper rim of a cone-calix[4]arene. Organic and Biomolecular Chemistry, 2012, 10, 5109.	2.8	26
21	The Hydrolysis of the Anhydride of 2â€Cyanoâ€2â€phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid–Base Operated Molecular Switch. Chemistry - A European Journal, 2019, 25, 15205-15211.	3.3	24
22	Supramolecular Catalysts Featuring Crown Ethers as Recognition Units. European Journal of Organic Chemistry, 2020, 2020, 3340-3350.	2.4	24
23	Supramolecular Control of Reactivity and Catalysis – Effective Molarities of Recognitionâ€Mediated Bimolecular Reactions. European Journal of Organic Chemistry, 2014, 2014, 7304-7315.	2.4	23
24	Formation of Imidazo[1,5- <i>a</i>]pyridine Derivatives Due to the Action of Fe ²⁺ on Dynamic Libraries of Imines. Journal of Organic Chemistry, 2017, 82, 3820-3825.	3.2	22
25	Combinatorial Macrocyclizations under Thermodynamic Control: The Two-Monomer Case. Macromolecules, 2009, 42, 4077-4083.	4.8	21
26	The canonical behavior of the entropic component of thermodynamic effective molarity. An attempt at unifying covalent and noncovalent cyclizations. Physical Chemistry Chemical Physics, 2019, 21, 955-987.	2.8	20
27	Group 14 organometallic reagents. 11. Macrocyclic polylactones by catalyzed cyclooligomerization. Tetra[(S)betabutyrolactone]. Journal of Organic Chemistry, 1992, 57, 1472-1476.	3.2	18
28	Organotin-mediated synthesis of macrocyclic tetraesters. A combined proton NMR spectroscopy, gel permeation chromatography, and fast atom bombardment mass spectrometry approach to complete product analysis. Macromolecules, 1989, 22, 3275-3280.	4.8	15
29	Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines. Organic and Biomolecular Chemistry, 2020, 18, 3867-3873.	2.8	11
30	A Cu ^I â€Based Metalloâ€Supramolecular Gelâ€Like Material Built from a Library of ÂOligomeric Ligands Featuring Exotopic 1,10â€Phenanthroline Units. European Journal of Organic Chemistry, 2015, 2015, 7504-7510.	2.4	7