
Buda Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7425118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Projected urban exposure to extreme precipitation over South Asia. Science of the Total Environment, 2022, 822, 153664.	8.0	11
2	The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China. Natural Hazards, 2022, 112, 1967-1988.	3.4	21
3	Why the Effect of CO2 on Potential Evapotranspiration Estimation Should Be Considered in Future Climate. Water (Switzerland), 2022, 14, 986.	2.7	6
4	China's Socioeconomic and CO2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways. Sustainability, 2022, 14, 3065.	3.2	6
5	Gridded value-added of primary, secondary and tertiary industries in China under Shard Socioeconomic Pathways. Scientific Data, 2022, 9, .	5.3	15
6	Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 2021, 250, 105375.	4.1	157
7	Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Frontiers of Earth Science, 2021, 15, 23-37.	2.1	27
8	Synchronous Characteristics of Precipitation Extremes in the Yangtze and Murray-Darling River Basins and the Role of ENSO. Journal of Meteorological Research, 2021, 35, 282-294.	2.4	2
9	Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Science of the Total Environment, 2021, 771, 145186.	8.0	56
10	Projected Land Evaporation and Its Response to Vegetation Greening Over China Under Multiple Scenarios in the CMIP6 Models. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006327.	3.0	15
11	Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5–3.0 °C warming levels using CMIP6-GCMs. Science of the Total Environment, 2021, 789, 147867.	8.0	37
12	Spatiotemporal variations of aridity index over the Belt and Road region under the 1.5ŰC and 2.0ŰC warming scenarios. Journal of Chinese Geography, 2020, 30, 37-52.	3.9	18
13	Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China. Climatic Change, 2020, 163, 1207-1226.	3.6	34
14	Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere, 2020, 11, 909.	2.3	7
15	Comparison of Changing Population Exposure to Droughts in River Basins of the Tarim and the Indus. Earth's Future, 2020, 8, e2019EF001448.	6.3	26
16	Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nature Communications, 2019, 10, 3376.	12.8	105
17	Effect of Fertility Policy Changes on the Population Structure and Economy of China: From the Perspective of the Shared Socioeconomic Pathways. Earth's Future, 2019, 7, 250-265.	6.3	99
18	Estimation of economic losses from tropical cyclones in China at 1.5 °C and 2.0 °C warming using the regional climate model COSMOâ€CLM. International Journal of Climatology, 2019, 39, 724-737.	² 3.5	12

Buda Su

#	Article	IF	CITATIONS
19	Impacts of 1.5â€Â°C and 2â€Â°C global warming on winter snow depth in Central Asia. Science of the Total Environment, 2019, 651, 2866-2873.	8.0	43
20	Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dynamics, 2018, 50, 507-525.	3.8	90
21	Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10600-10605.	7.1	328
22	Regional frequency analysis of observed sub-daily rainfall maxima over eastern China. Advances in Atmospheric Sciences, 2017, 34, 209-225.	4.3	11
23	Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 ŰC and 2.0 ŰC in the Tarim River basin, China. Atmospheric Research, 2017, 196, 119-128.	4.1	29
24	Exposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0°C scenarios. Quaternary International, 2017, 453, 74-84.	1.5	33
25	Observed changes in maximum and minimum temperatures in Xinjiang autonomous region, China. International Journal of Climatology, 2017, 37, 5120-5128.	3.5	23
26	Impacts of climate change on streamflow in the upper Yangtze River basin. Climatic Change, 2017, 141, 533-546.	3.6	90
27	Simulation and projection of climatic changes in the Indus River Basin, using the regional climate model <scp>COSMOâ€CLM</scp> . International Journal of Climatology, 2017, 37, 2545-2562.	3.5	23
28	Spatiotemporal distributions of influential tropical cyclones and associated economic losses in China in 1984–2015. Natural Hazards, 2016, 84, 2009-2030.	3.4	29
29	Attribution of streamflow trends in snow and glacier meltâ€dominated catchments of the <scp>T</scp> arim <scp>R</scp> iver, Central <scp>A</scp> sia. Water Resources Research, 2015, 51, 4727-4750.	4.2	146
30	Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007. Climatic Change, 2012, 110, 783-799.	3.6	82
31	Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. International Journal of Climatology, 2008, 28, 1471-1481.	3.5	133