
Michael Sauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7425037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 2008, 26, 100-108.	4.9	680
2	Improvement of Lactic Acid Production in Saccharomyces cerevisiae by Cell Sorting for High Intracellular pH. Applied and Environmental Microbiology, 2006, 72, 5492-5499.	1.4	351
3	Recombinant Protein Production in Yeasts. Methods in Molecular Biology, 2012, 824, 329-358.	0.4	245
4	Stress in recombinant protein producing yeasts. Journal of Biotechnology, 2004, 113, 121-135.	1.9	209
5	The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nature Biotechnology, 2020, 38, 210-216.	9.4	200
6	<i>Pichia pastoris</i> : protein production host and model organism for biomedical research. Future Microbiology, 2013, 8, 191-208.	1.0	198
7	Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8, 29.	1.9	189
8	The Effect of Temperature on the Proteome of Recombinant <i>Pichia pastoris</i> . Journal of Proteome Research, 2009, 8, 1380-1392.	1.8	170
9	Recombinant Protein Production in Yeasts. Molecular Biotechnology, 2005, 31, 245-260.	1.3	152
10	Transcriptomics-Based Identification of Novel Factors Enhancing Heterologous Protein Secretion in Yeasts. Applied and Environmental Microbiology, 2007, 73, 6499-6507.	1.4	148
11	Biochemistry of microbial itaconic acid production. Frontiers in Microbiology, 2013, 4, 23.	1.5	138
12	Systems-level organization of yeast methylotrophic lifestyle. BMC Biology, 2015, 13, 80.	1.7	118
13	1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 2012, 119, 133-140.	4.8	115
14	16 years research on lactic acid production with yeast – ready for the market?. Biotechnology and Genetic Engineering Reviews, 2010, 27, 229-256.	2.4	114
15	Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. Journal of Biotechnology, 2010, 150, 519-529.	1.9	110
16	The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends in Biotechnology, 2017, 35, 756-769.	4.9	106
17	Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics, 2007, 8, 179.	1.2	105
18	GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Systems Biology, 2017, 11, 123.	3.0	105

#	Article	IF	CITATIONS
19	Directed gene copy number amplification in <i>Pichia pastoris</i> by vector integration into the ribosomal DNA locus. FEMS Yeast Research, 2009, 9, 1260-1270.	1.1	104
20	Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics, 2008, 9, 390.	1.2	103
21	Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metabolic Engineering, 2019, 52, 224-231.	3.6	99
22	Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metabolic Engineering, 2013, 19, 26-32.	3.6	98
23	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
24	Intracellular pH Distribution in Saccharomyces cerevisiae Cell Populations, Analyzed by Flow Cytometry. Applied and Environmental Microbiology, 2005, 71, 1515-1521.	1.4	94
25	An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresource Technology, 2017, 245, 1327-1333.	4.8	93
26	Yeast biotechnology: teaching the old dog new tricks. Microbial Cell Factories, 2014, 13, 34.	1.9	91
27	Production of recombinant proteins and metabolites in yeasts. Applied Microbiology and Biotechnology, 2011, 89, 939-948.	1.7	90
28	Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Frontiers in Microbiology, 2020, 11, 556140.	1.5	90
29	Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microbial Cell Factories, 2006, 5, 4.	1.9	84
30	Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial Cell Factories, 2008, 7, 23.	1.9	81
31	Biosynthesis of Vitamin C by Yeast Leads to Increased Stress Resistance. PLoS ONE, 2007, 2, e1092.	1.1	78
32	Production of l -Ascorbic Acid by Metabolically Engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Applied and Environmental Microbiology, 2004, 70, 6086-6091.	1.4	74
33	The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics, 2010, 11, 207.	1.2	74
34	Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresource Technology, 2014, 152, 499-504.	4.8	73
35	Metabolic Flexibility of Yarrowia lipolytica Growing on Glycerol. Frontiers in Microbiology, 2017, 8, 49.	1.5	70
36	<scp>U</scp> ¹³ <scp>C</scp> cell extract of <scp>P</scp> ichia pastoris – a powerful tool for evaluation of sample preparation in metabolomics. Journal of Separation Science, 2012, 35, 3091-3105.	1.3	66

#	Article	IF	CITATIONS
37	Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Applied Microbiology and Biotechnology, 2013, 97, 259-267.	1.7	60
38	Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiology Letters, 2016, 363, fnw134.	0.7	60
39	Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microbial Cell Factories, 2004, 3, 17.	1.9	55
40	The yeast : a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Research, 2004, 4, 493-504.	1.1	53
41	Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnology Progress, 2011, 27, 38-46.	1.3	46
42	Genome Sequence of the Ruminal Bacterium Megasphaera elsdenii. Journal of Bacteriology, 2011, 193, 5578-5579.	1.0	44
43	Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metabolic Engineering, 2016, 35, 95-104.	3.6	42
44	LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters. Analytical and Bioanalytical Chemistry, 2015, 407, 6681-6688.	1.9	39
45	Cloning, disruption and protein secretory phenotype of theGAS1homologue ofPichia pastoris. FEMS Microbiology Letters, 2006, 264, 40-47.	0.7	35
46	Genomeâ€scale analysis of library sorting (GALibSo): Isolation of secretion enhancing factors for recombinant protein production in <i>Pichia pastoris</i> . Biotechnology and Bioengineering, 2010, 105, 543-555.	1.7	34
47	Microbial Production of 1,3-Propanediol. Recent Patents on Biotechnology, 2008, 2, 191-197.	0.4	33
48	Organic acids from lignocellulose: <i>Candida lignohabitans</i> as a new microbial cell factory. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 681-691.	1.4	33
49	Golden Gate-based metabolic engineering strategy for wild-type strains of <i>Yarrowia lipolytica</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	33
50	Mass spectrometry based analysis of nucleotides, nucleosides, and nucleobases—application to feed supplements. Analytical and Bioanalytical Chemistry, 2012, 404, 799-808.	1.9	32
51	Construction of microbial cell factories for industrial bioprocesses. Journal of Chemical Technology and Biotechnology, 2012, 87, 445-450.	1.6	31
52	Enhanced glutathione production by evolutionary engineering of <i>Saccharomyces cerevisiae</i> strains. Biotechnology Journal, 2015, 10, 1719-1726.	1.8	31
53	Growth characteristics ofEscherichia coliHB101[pGEc47] on defined medium. , 1998, 58, 92-100.		30
54	Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnology Advances, 2019, 37, 107395.	6.0	30

#	Article	IF	CITATIONS
55	Effect of HXT 1 and HXT 7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells. Microbial Cell Factories, 2010, 9, 15.	1.9	29
56	Microbial organic acid production as carbon dioxide sink. FEMS Microbiology Letters, 2017, 364, .	0.7	28
57	Microbial 2-butanol production with Lactobacillus diolivorans. Biotechnology for Biofuels, 2019, 12, 262.	6.2	28
58	Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth. Biotechnology and Bioengineering, 2011, 108, 2403-2412.	1.7	26
59	Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. New Biotechnology, 2017, 34, 32-39.	2.4	26
60	Old obstacles and new horizons for microbial chemical production. Current Opinion in Biotechnology, 2014, 30, 101-106.	3.3	25
61	3-Hydroxypropionaldehyde production from crude glycerol by Lactobacillus diolivorans with enhanced glycerol uptake. Biotechnology for Biofuels, 2017, 10, 295.	6.2	25
62	Circular bioeconomy approaches for sustainability. Bioresource Technology, 2020, 318, 124084.	4.8	25
63	Interlaboratory comparison for quantitative primary metabolite profiling in Pichia pastoris. Analytical and Bioanalytical Chemistry, 2013, 405, 5159-5169.	1.9	23
64	Biotransformation of octane byE. coli HB101[pGEc47] on defined medium: Octanoate production and product inhibition. , 1998, 58, 356-365.		22
65	Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. Bioresource Technology, 2022, 346, 126296.	4.8	22
66	From rumen to industry. Microbial Cell Factories, 2012, 11, 121.	1.9	17
67	Genetic engineering of <i>Lactobacillus diolivorans</i> . FEMS Microbiology Letters, 2013, 344, 152-158.	0.7	17
68	Metabolomics sampling ofPichia pastorisrevisited: rapid filtration prevents metabolite loss during quenching. FEMS Yeast Research, 2015, 15, fov049.	1.1	14
69	Efficient conversion of hemicellulose sugars from spent sulfite liquor into optically pure L-lactic acid by Enterococcus mundtii. Bioresource Technology, 2021, 333, 125215.	4.8	14
70	Insights into the glycerol transport of <i>Yarrowia lipolytica</i> . Yeast, 2022, 39, 323-336.	0.8	13
71	Microbial carbon dioxide fixation: new tricks for an old game. FEMS Microbiology Letters, 2018, 365, .	0.7	12
72	Complete genome sequence and transcriptome regulation of the pentose utilizing yeast <i>Sugiyamaella lignohabitans</i> . FEMS Yeast Research, 2016, 16, fow037.	1.1	11

#	Article	IF	CITATIONS
73	Measurement uncertainty of isotopologue fractions in fluxomics determined via mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 5133-5146.	1.9	10
74	Identification of the citrate exporter Cex1 of <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2020, 20,	1.1	9
75	Lactic acid bacteria: little helpers for many human tasks. Essays in Biochemistry, 2021, 65, 163-171.	2.1	8
76	Improvement of 3-hydroxypropionic acid tolerance in Klebsiella pneumoniae by novel transporter YohJK. Bioresource Technology, 2022, 346, 126613.	4.8	8
77	Investigating the multibudded and binucleate phenotype of the yeast <i>Zygosaccharomyces bailii</i> growing on minimal medium. FEMS Yeast Research, 2008, 8, 906-915.	1.1	7
78	Slow Growth and Increased Spontaneous Mutation Frequency in Respiratory Deficient afo1- Yeast Suppressed by a Dominant Mutation in ATP3. G3: Genes, Genomes, Genetics, 2020, 10, 4637-4648.	0.8	7
79	Downscaling screening cultures in a multifunctional bioreactor arrayâ€onâ€aâ€chip for speeding up optimization of yeastâ€based lactic acid bioproduction. Biotechnology and Bioengineering, 2020, 117, 2046-2057.	1.7	7
80	Microscale Perfusionâ€Based Cultivation for <i>Pichia pastoris</i> Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Biotechnology Journal, 2021, 16, e2000215.	1.8	7
81	The Plasma Membrane at the Cornerstone Between Flexibility and Adaptability: Implications for Saccharomyces cerevisiae as a Cell Factory. Frontiers in Microbiology, 2021, 12, 715891.	1.5	7
82	Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	1.1	6
83	Sclerotia formed by citric acid producing strains of Aspergillus niger: Induction and morphological analysis. Fungal Biology, 2021, 125, 485-494.	1.1	5
84	Non-genetic impact factors on chronological lifespan and stress resistance of baker's yeast. Microbial Cell, 2016, 3, 232-235.	1.4	4
85	Editorial for the thematic issue on "Industrial Microbiology― FEMS Microbiology Letters, 2018, 365, .	0.7	3
86	The fungal sexual revolution continues: discovery of sexual development in members of the genus Aspergillus and its consequences. Fungal Biology and Biotechnology, 2020, 7, 17.	2.5	3
87	Synthetic Biology Assisting Metabolic Pathway Engineering. , 2016, , 255-280.		2
88	Synthetic Biology. , 2016, , .		2
89	Microbial production of organic acids for use in food. , 2013, , 288-320.		1
90	New Horizons in Biotechnology – NHBT 2015. Bioresource Technology, 2016, 213, 1.	4.8	1

#	Article	IF	CITATIONS
91	Production of Metabolites and Heterologous Proteins. , 2014, , 299-326.		1
92	An artificial coculture fermentation system for industrial propanol production. FEMS Microbes, 0, , .	0.8	1
93	Membrane transport as a target for metabolic engineering. , 2022, , 27-43.		1
94	Title is missing!. Microbial Cell Factories, 2006, 5, S26.	1.9	0
95	Title is missing!. Microbial Cell Factories, 2006, 5, P53.	1.9	0
96	Title is missing!. Microbial Cell Factories, 2006, 5, P69.	1.9	0
97	Scaffolding for metabolic engineering endeavors. New Biotechnology, 2016, 33, S185-S186.	2.4	0
98	PREFACE: Special Issue on Advances in Industrial Bioprocesses and Products - Genetic and Metabolic Engineering Interventions. Bioresource Technology, 2017, 245, 1303.	4.8	0
99	Building Communities—The 8th Congress of European Microbiologists. Biotechnology Journal, 2020, 15, e2000222.	1.8	0
100	13 YeastÂCellÂFactories. , 2020, , 319-337.		0
101	Production of Metabolites and Heterologous Proteins. , 2014, , 299-326.		0