Changsheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7424781/publications.pdf

Version: 2024-02-01

186209 223716 3,321 46 28 46 citations h-index g-index papers 46 46 46 4961 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Dual-function injectable fibrin gel incorporated with sulfated chitosan nanoparticles for rhBMP-2-induced bone regeneration. Applied Materials Today, 2022, 26, 101347.	2.3	5
2	Bioactive Filmâ€Guided Soft–Hard Interface Design Technology for Multiâ€Tissue Integrative Regeneration. Advanced Science, 2022, , 2105945.	5.6	4
3	Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxiaâ€Mimetic Hydrogel. Advanced Functional Materials, 2021, 31, 2008515.	7.8	32
4	Rational Design and Fabrication of Biomimetic Hierarchical Scaffolds With Bone-Matchable Strength for Bone Regeneration. Frontiers in Materials, 2021, 7, .	1.2	1
5	Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. Science Advances, 2021, 7, .	4.7	65
6	Spatiotemporal Immunomodulation Using Biomimetic Scaffold Promotes Endochondral Ossificationâ€Mediated Bone Healing. Advanced Science, 2021, 8, e2100143.	5.6	33
7	Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction. Chemical Engineering Journal, 2021, 411, 128541.	6.6	37
8	Incorporating redox-sensitive nanogels into bioabsorbable nanofibrous membrane to acquire ROS-balance capacity for skin regeneration. Bioactive Materials, 2021, 6, 3461-3472.	8.6	30
9	Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration. Biomaterials, 2020, 232, 119645.	5.7	54
10	Controllable Synthesis of Biomimetic Hydroxyapatite Nanorods with High Osteogenic Bioactivity. ACS Biomaterials Science and Engineering, 2020, 6, 320-328.	2.6	36
11	Biomaterial-guided immobilization and osteoactivity of bone morphogenetic protein-2. Applied Materials Today, 2020, 19, 100599.	2.3	13
12	The regulatory role of sulfated polysaccharides in facilitating rhBMP-2-induced osteogenesis. Biomaterials Science, 2019, 7, 4375-4387.	2.6	9
13	Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216, 119216.	5.7	46
14	Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Materials Science and Engineering C, 2019, 100, 855-861.	3.8	38
15	Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids and Surfaces B: Biointerfaces, 2019, 178, 22-31.	2.5	10
16	Accelerated Bone Regenerative Efficiency by Regulating Sequential Release of BMP-2 and VEGF and Synergism with Sulfated Chitosan. ACS Biomaterials Science and Engineering, 2019, 5, 1944-1955.	2.6	26
17	Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Biomaterials, 2019, 196, 122-137.	5.7	108
18	Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan. Acta Biomaterialia, 2018, 71, 510-521.	4.1	45

#	Article	IF	Citations
19	Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomaterialia, 2018, 71, 184-199.	4.1	34
20	Development of bioabsorbable polylactide membrane with controllable hydrophilicity for adjustment of cell behaviours. Royal Society Open Science, 2018, 5, 170868.	1.1	15
21	Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol) Tj ETQq1 1 0.7843	14 rgBT /(4.1	Dverlock 10
22	Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2387-2395.	1.7	43
23	Synergistic effects of dual growth factor delivery from composite hydrogels incorporating <i>2-N,6-O-</i> sulphated chitosan on bone regeneration. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-17.	1.9	20
24	The immunomodulatory role of sulfated chitosan in BMP-2-mediated bone regeneration. Biomaterials Science, 2018, 6, 2496-2507.	2.6	28
25	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
26	In situ biodegradable crosslinking of cationic oligomer coating on mesoporous silica nanoparticles for drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 153, 272-279.	2.5	15
27	Microporous density-mediated response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds via fibronectin/integrin and FAK/MAPK signaling pathways. Journal of Materials Chemistry B, 2017, 5, 3586-3599.	2.9	17
28	RhBMP-2 loaded MBG/PEGylated poly(glycerol sebacate) composite scaffolds for rapid bone regeneration. Journal of Materials Chemistry B, 2017, 5, 4633-4647.	2.9	33
29	2- N , 6- O -sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction. Materials Science and Engineering C, 2017, 74, 298-306.	3.8	38
30	Potentiation effect of HB-EGF on facilitating wound healing via 2-N,6-O-sulfated chitosan nanoparticles modified PLGA scaffold. RSC Advances, 2017, 7, 43161-43171.	1.7	14
31	Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA. Colloids and Surfaces B: Biointerfaces, 2017, 159, 684-695.	2.5	20
32	Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomaterialia, 2016, 32, 309-323.	4.1	202
33	PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomaterialia, 2016, 44, 110-124.	4.1	67
34	Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17166-17175.	4.0	101
35	Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic) Tj ETQq1 1 0.7845 glycol-poly(d,l-lactic acid). Acta Biomaterialia, 2016, 29, 248-260.	314 rgBT , 4.1	Overlock 10 65
36	In Situ formation of pH-/thermo-sensitive nanohybrids via friendly-assembly of poly(N-vinylpyrrolidone) onto LAPONITE®. RSC Advances, 2016, 6, 31816-31823.	1.7	12

#	Article	IF	Citations
37	Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials, 2015, 53, 251-264.	5.7	181
38	\hat{l}^2 -Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Materials Science and Engineering C, 2015, 56, 37-47.	3.8	66
39	Enhancement of VEGF-Mediated Angiogenesis by 2- <i>N</i> ,6- <i>O</i> -Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9982-9990.	4.0	44
40	A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 131, 1-11.	2.5	45
41	Preparation of an rhBMP-2 loaded mesoporous bioactive glass/calcium phosphate cement porous composite scaffold for rapid bone tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 8558-8566.	2.9	26
42	Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomaterialia, 2015, 27, 275-285.	4.1	44
43	Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials, 2014, 35, 2730-2742.	5.7	108
44	Kaolin-reinforced 3D MBG scaffolds with hierarchical architecture and robust mechanical strength for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 3782-3790.	2.9	26
45	Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering Reports, 2014, 80, 1-36.	14.8	854
46	Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials, 2009, 30, 1715-1724.	5.7	150