Flavia Fontanesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7424615/publications.pdf

Version: 2024-02-01

172457 233421 2,964 48 29 45 citations h-index g-index papers 49 49 49 4026 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells. Developmental Cell, 2022, 57, 654-669.e9.	7.0	5
2	APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Human Molecular Genetics, 2021, 30, 182-197.	2.9	27
3	Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance. Cancer Discovery, 2021, 11, 2072-2093.	9.4	43
4	Protocol for the Analysis of Yeast and Human Mitochondrial Respiratory Chain Complexes and Supercomplexes by Blue Native Electrophoresis. STAR Protocols, 2020, 1, 100089.	1.2	18
5	The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Frontiers in Physiology, 2020, 11, 732.	2.8	29
6	Human mitochondrial transcription and translation. , 2020, , 35-70.		0
7	Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO Journal, 2020, 39, e103912.	7.8	54
8	Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Frontiers in Cell and Developmental Biology, 2020, 8, 603688.	3.7	19
9	HIGD-Driven Regulation of Cytochrome c Oxidase Biogenesis and Function. Cells, 2020, 9, 2620.	4.1	22
10	The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Research, 2020, 48, 6759-6774.	14.5	15
11	Respiratory supercomplexes enhance electron transport by decreasing cytochrome <i>c</i> diffusion distance. EMBO Reports, 2020, 21, e51015.	4.5	71
12	The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits. Nucleic Acids Research, 2019, 47, 5746-5760.	14.5	18
13	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103
14	Ate1 Controls Cellular Warburg Effects by Modifying Hif1a with Arginylation. FASEB Journal, 2019, 33, lb312.	0.5	0
15	Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics. Cell Reports, 2018, 25, 1786-1799.e4.	6.4	55
16	Insights into the genotype-phenotype correlation and molecular function of SLC25A46. Human Mutation, 2018, 39, 1995-2007.	2.5	30
17	Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1249-1258.	1.0	39
18	The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Research, 2017, 45, 6628-6643.	14.5	53

#	Article	lF	Citations
19	Mitochondrial ribosome assembly in health and disease. Cell Cycle, 2015, 14, 2226-2250.	2.6	157
20	Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nature Genetics, 2015, 47, 926-932.	21.4	166
21	Elongator-dependent modification of cytoplasmic tRNA ^{Lys} _{UUU} is required for mitochondrial function under stress conditions. Nucleic Acids Research, 2015, 43, 8368-8380.	14.5	30
22	Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Microbiology, 2013, 90, 824-840.	2.5	45
23	Mitochondrial Cytochrome c Oxidase Assembly in Health and Human Diseases. , 2013, , 239-259.		3
24	The DEAD Box Protein Mrh4 Functions in the Assembly of the Mitochondrial Large Ribosomal Subunit. Cell Metabolism, 2013, 18, 712-725.	16.2	43
25	Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome <i>c</i> Oxidase Biogenesis. Antioxidants and Redox Signaling, 2013, 19, 1940-1952.	5.4	55
26	hCOA3 Stabilizes Cytochrome c Oxidase 1 (COX1) and Promotes Cytochrome c Oxidase Assembly in Human Mitochondria. Journal of Biological Chemistry, 2013, 288, 8321-8331.	3.4	46
27	Mechanisms of mitochondrial translational regulation. IUBMB Life, 2013, 65, 397-408.	3.4	29
28	Mitochondrial Complex I Plays an Essential Role in Human Respirasome Assembly. Cell Metabolism, 2012, 15, 324-335.	16.2	234
29	A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis. Cell Metabolism, 2012, 16, 801-813.	16.2	66
30	Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 883-897.	1.0	202
31	Cox25 Teams Up with Mss51, Ssc1, and Cox14 to Regulate Mitochondrial Cytochrome c Oxidase Subunit 1 Expression and Assembly in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 555-566.	3.4	69
32	Mss51 and Ssc1 Facilitate Translational Regulation of Cytochrome <i>c</i> Oxidase Biogenesis. Molecular and Cellular Biology, 2010, 30, 245-259.	2.3	72
33	Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Yeast Models of OXPHOS Deficiencies. Current Protocols in Human Genetics, 2009, 63, Unit19.5.	3.5	14
34	Suppression mechanisms of COX assembly defects in yeast and human: Insights into the COX assembly process. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 97-107.	4.1	91
35	Synthesis of cytochrome c oxidase subunit 1 is translationally downregulated in the absence of functional F1F0-ATP synthase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1776-1786.	4.1	40
36	Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Blue Native Gel Electrophoresis. Current Protocols in Human Genetics, 2009, 63, Unit19.4.	3. 5	49

#	Article	IF	CITATIONS
37	Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Polarography and Spectrophotometric Enzyme Assays. Current Protocols in Human Genetics, 2009, 63, Unit19.3.	3.5	178
38	Cytochrome <i>c</i> oxidase biogenesis: New levels of regulation. IUBMB Life, 2008, 60, 557-568.	3.4	143
39	Bot1p Is Required for Mitochondrial Translation, Respiratory Function, and Normal Cell Morphology in the Fission Yeast <i>Schizosaccharomyces pombe</i> . Eukaryotic Cell, 2008, 7, 619-629.	3.4	12
40	Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Human Molecular Genetics, 2008, 17, 775-788.	2.9	45
41	Exploring Protein-Protein Interactions Involving Newly Synthesized Mitochondrial DNA-Encoded Proteins. Methods in Molecular Biology, 2008, 457, 125-139.	0.9	7
42	Aberrant Translation of CytochromecOxidase Subunit 1 mRNA Species in the Absence of Mss51p in the YeastSaccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 523-535.	2.1	54
43	Mutation D104G in ANT1 gene: Complementation study in Saccharomyces cerevisiae as a model system. Biochemical and Biophysical Research Communications, 2006, 341, 810-815.	2.1	17
44	Heterologous complementation of the Klaacnull mutation of Kluyveromyces lactisby the Saccharomyces cerevisiae AAC3 gene encoding the ADP/ATP carrier. FEMS Yeast Research, 2006, 6, 414-420.	2.3	6
45	Assembly of mitochondrial cytochromec-oxidase, a complicated and highly regulated cellular process. American Journal of Physiology - Cell Physiology, 2006, 291, C1129-C1147.	4.6	214
46	Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Human Molecular Genetics, 2005, 14, 3079-3088.	2.9	165
47	Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Human Molecular Genetics, 2004, 13, 923-934.	2.9	71
48	Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene, 2004, 339, 111-119.	2.2	33