


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7424304/publications.pdf Version: 2024-02-01



ΚΛΙΧΙ

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Schottky junction and multiheterostructure synergistically enhance rate performance and cycling stability. Chemical Engineering Journal, 2022, 430, 132994.                                   | 6.6  | 8         |
| 2  | Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Materials, 2022, 45, 1229-1237. | 9.5  | 81        |
| 3  | Nickel Quantum Dots Anchored in Biomassâ€Derived Nitrogenâ€Doped Carbon as Bifunctional<br>Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .            | 1.9  | 7         |
| 4  | Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon.<br>Small, 2022, 18, e2107113.                                                                | 5.2  | 65        |
| 5  | Polyoxometalate Ionic Sponge Enabled Dendrite‑Free and Highly Stable Lithium Metal Anode. Small<br>Methods, 2022, 6, e2101613.                                                                | 4.6  | 17        |
| 6  | A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for<br>Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .            | 10.2 | 53        |
| 7  | Boosting the Ion Mobility in Solid Polymer Electrolytes Using Hollow Polymer Nanospheres as an Additive. ACS Applied Materials & Interfaces, 2022, 14, 18360-18372.                           | 4.0  | 12        |
| 8  | Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode. Nature Communications, 2022, 13, .                                    | 5.8  | 18        |
| 9  | Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient<br>Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.        | 15.6 | 24        |
| 10 | Iron Selenide Microcapsules as Universal Conversionâ€Typed Anodes for Alkali Metalâ€Ion Batteries.<br>Small, 2021, 17, e2005745.                                                              | 5.2  | 66        |
| 11 | 2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.                                                                                                                      | 2.3  | 74        |
| 12 | The potential of microplastics as adsorbents of sodium dodecyl benzene sulfonate and chromium in an aqueous environment. Environmental Research, 2021, 197, 111057.                           | 3.7  | 26        |
| 13 | Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries.<br>Angewandte Chemie - International Edition, 2021, 60, 19306-19313.                | 7.2  | 35        |
| 14 | Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries.<br>Angewandte Chemie, 2021, 133, 19455-19462.                                       | 1.6  | 2         |
| 15 | Effect of loading methods on the performance of hierarchical porous carbon/sulfur composites in lithium sulfur batteries. Electrochimica Acta, 2021, 388, 138650.                             | 2.6  | 17        |
| 16 | Amorphous CoS1.4 ultrathin nanosheets/amorphous N-doped carbon nanobox: A dual-amorphous confined structure for superior potassium storage. Journal of Power Sources, 2021, 506, 230117.      | 4.0  | 11        |
| 17 | Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches.<br>Journal of Energy Chemistry, 2021, 62, 307-337.                                           | 7.1  | 73        |
| 18 | Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.                                                                   | 15.6 | 402       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sulfur vacancies in Co <sub>9</sub> S <sub>8â^'x</sub> /N-doped graphene enhancing the<br>electrochemical kinetics for high-performance lithium–sulfur batteries. Journal of Materials<br>Chemistry A, 2021, 9, 10704-10713. | 5.2  | 53        |
| 20 | Blowing Iron Chalcogenides into Two-Dimensional Flaky Hybrids with Superior Cyclability and Rate<br>Capability for Potassium-Ion Batteries. ACS Nano, 2021, 15, 2506-2519.                                                   | 7.3  | 79        |
| 21 | Single-Atom Co Doped in Ultrathin WO <sub>3</sub> Arrays for the Enhanced Hydrogen Evolution<br>Reaction in a Wide pH Range. ACS Applied Materials & Interfaces, 2021, 13, 53915-53924.                                      | 4.0  | 17        |
| 22 | Collaborative Design of Hollow Nanocubes, In Situ Cross‣inked Binder, and Amorphous<br>Void@SiO <i><sub>x</sub></i> @C as a Threeâ€Pronged Strategy for Ultrastable Lithium Storage. Small,<br>2020, 16, e1905736.           | 5.2  | 43        |
| 23 | Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 779-788.                                                          | 5.2  | 73        |
| 24 | Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. Energy and Environmental Science, 2020, 13, 4114-4121.                                             | 15.6 | 78        |
| 25 | Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide<br>adsorption-catalysis of lithium sulfur battery. Science China Materials, 2020, 63, 2443-2455.                                   | 3.5  | 69        |
| 26 | Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy,<br>2020, 75, 104979.                                                                                                   | 8.2  | 55        |
| 27 | Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Research, 2020, 13, 2289-2298.                                                                    | 5.8  | 51        |
| 28 | Suppressing the Shuttle Effect and Dendrite Growth in Lithium–Sulfur Batteries. ACS Nano, 2020, 14,<br>9819-9831.                                                                                                            | 7.3  | 209       |
| 29 | Nitrogen-Doped Hierarchical Porous Carbon-Promoted Adsorption of Anthraquinone for Long-Life<br>Organic Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34910-34918.                                                | 4.0  | 9         |
| 30 | Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.                                                                                                                             | 9.5  | 223       |
| 31 | K0.6CoO2-xNx porous nanoframe: A co-enhanced ionic and electronic transmission for potassium ion batteries. Chemical Engineering Journal, 2020, 396, 125218.                                                                 | 6.6  | 14        |
| 32 | Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer<br>electrolyte for lithium dendrite inhibition. Journal of Materials Chemistry A, 2020, 8, 9579-9589.                             | 5.2  | 81        |
| 33 | A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Materials, 2019,<br>16, 597-606.                                                                                                     | 9.5  | 150       |
| 34 | Carbon@titanium nitrideÂdual shell nanospheres as multi-functional hosts for lithium sulfur<br>batteries. Energy Storage Materials, 2019, 16, 228-235.                                                                       | 9.5  | 276       |
| 35 | Lithium–Sulfur Batteries: Flexible and High‣oading Lithium–Sulfur Batteries Enabled by Integrated<br>Threeâ€Inâ€One Fibrous Membranes (Adv. Energy Mater. 38/2019). Advanced Energy Materials, 2019, 9,<br>1970147.          | 10.2 | 5         |
| 36 | Graphene-like monolayer monoxides and monochlorides. Proceedings of the National Academy of<br>Sciences of the United States of America, 2019, 116, 17213-17218.                                                             | 3.3  | 54        |

| #  | Article                                                                                                                                                                                                                                                                         | IF             | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 37 | Flexible and Highâ€Loading Lithium–Sulfur Batteries Enabled by Integrated Threeâ€Inâ€One Fibrous<br>Membranes. Advanced Energy Materials, 2019, 9, 1902001.                                                                                                                     | 10.2           | 98        |
| 38 | Hollow Multihole Carbon Bowls: A Stress–Release Structure Design for High-Stability and<br>High-Volumetric-Capacity Potassium-Ion Batteries. ACS Nano, 2019, 13, 11363-11371.                                                                                                   | 7.3            | 143       |
| 39 | Interfacial electronic properties of ferroelectric nanocomposites for energy storage application.<br>Materials Today Energy, 2019, 12, 136-145.                                                                                                                                 | 2.5            | 23        |
| 40 | Galvanic exchange carving growth of Co–Fe LDHs with enhanced water oxidation. International<br>Journal of Hydrogen Energy, 2019, 44, 20085-20092.                                                                                                                               | 3.8            | 12        |
| 41 | Optimization of Von Mises Stress Distribution in Mesoporous αâ€Fe <sub>2</sub> O <sub>3</sub> /C<br>Hollow Bowls Synergistically Boosts Gravimetric/Volumetric Capacity and Highâ€Rate Stability in<br>Alkaliâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1902822. | 7.8            | 65        |
| 42 | Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries:<br>Enhanced Conductivity from Interior to Exterior. ACS Nano, 2019, 13, 6906-6916.                                                                                        | 7.3            | 139       |
| 43 | Facile mechanochemical synthesis of non-stoichiometric silica-carbon composite for enhanced lithium storage properties. Journal of Alloys and Compounds, 2019, 801, 658-665.                                                                                                    | 2.8            | 11        |
| 44 | Enhancing Catalytic Activity of Titanium Oxide in Lithium–Sulfur Batteries by Band Engineering.<br>Advanced Energy Materials, 2019, 9, 1900953.                                                                                                                                 | 10.2           | 326       |
| 45 | Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy, 2019, 59, 762-772.                                                                                                                  | 8.2            | 155       |
| 46 | Synthesis and Luminescence Properties of a Novel Green-Yellow-Emitting Phosphor BiOCl:Pr3+ for<br>Blue-Light-Based w-LEDs. Molecules, 2019, 24, 1296.                                                                                                                           | 1.7            | 7         |
| 47 | Enhanced Sulfur Transformation by Multifunctional FeS <sub>2</sub> /FeS/S Composites for<br>Highâ€Volumetric Capacity Cathodes in Lithium–Sulfur Batteries. Advanced Science, 2019, 6, 1800815.                                                                                 | 5.6            | 178       |
| 48 | A carbon microtube array with a multihole cross profile: releasing the stress and boosting<br>long-cycling and high-rate potassium ion storage. Journal of Materials Chemistry A, 2019, 7,<br>25845-25852.                                                                      | 5.2            | 36        |
| 49 | Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped<br>V <sub>2</sub> O <sub>5</sub> for high-performance potassium-ion batteries. Journal of Materials<br>Chemistry A, 2019, 7, 25993-26001.                                                        | 5.2            | 18        |
| 50 | Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano<br>Energy, 2019, 56, 741-750.                                                                                                                                                  | 8.2            | 65        |
| 51 | Lithium–Sulfur Capacitors. ACS Applied Materials & Interfaces, 2018, 10, 6199-6206.                                                                                                                                                                                             | 4.0            | 7         |
| 52 | Allâ€Inorganic Heteroâ€Structured Cesium Tin Halide Perovskite Lightâ€Emitting Diodes With Current<br>Density Over 900 A cm <sup>â^'2</sup> and Its Amplified Spontaneous Emission Behaviors. Physica Stat<br>Solidi - Rapid Research Letters, 2018, 12, 1800090.               | cu <b>s.</b> 2 | 47        |
| 53 | Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production.<br>Energy Storage Materials, 2018, 10, 268-274.                                                                                                                                      | 9.5            | 28        |
| 54 | CTAB-assisted growth of self-supported Zn <sub>2</sub> GeO <sub>4</sub> nanosheet network on a conductive foam as a binder-free electrode for long-life lithium-ion batteries. Nanoscale, 2018, 10, 921-929.                                                                    | 2.8            | 44        |

ΚΑΙ ΧΙ

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic<br>Repulsion Mechanisms. Journal of the American Chemical Society, 2018, 140, 17515-17521.                                                | 6.6  | 211       |
| 56 | Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell "nano-crisps―<br>for high-performance potassium-ion batteries. Applied Materials Today, 2018, 13, 344-351.                                             | 2.3  | 69        |
| 57 | Zero-strain K <sub>0.6</sub> Mn <sub>1</sub> F <sub>2.7</sub> hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.                                                              | 15.6 | 87        |
| 58 | A Strategy for Architecture Design of Crystalline Perovskite Lightâ€Emitting Diodes with High<br>Performance. Advanced Materials, 2018, 30, e1800251.                                                                                     | 11.1 | 148       |
| 59 | Anchoring Fe <sub>3</sub> O <sub>4</sub> Nanoparticles on Carbon Nanotubes for<br>Microwave-Induced Catalytic Degradation of Antibiotics. ACS Applied Materials & Interfaces, 2018,<br>10, 29467-29475.                                   | 4.0  | 83        |
| 60 | A Mixed Microporous/Low-range Mesoporous Composite with High Sulfur Loading from<br>Hierarchically-structured Carbon for Lithium Sulfur Batteries. Electrochimica Acta, 2017, 230, 181-188.                                               | 2.6  | 36        |
| 61 | Challenges and Perspectives for NASICONâ€Type Electrode Materials for Advanced Sodiumâ€Ion Batteries.<br>Advanced Materials, 2017, 29, 1700431.                                                                                           | 11.1 | 499       |
| 62 | Improve the catalytic property of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes with CuO nanoparticles infiltration. Electrochimica Acta, 2017, 246, 148-155.                                                                   | 2.6  | 16        |
| 63 | Quick one-pot synthesis of amorphous carbon-coated cobalt–ferrite twin elliptical frustums for enhanced lithium storage capability. Journal of Materials Chemistry A, 2017, 5, 8062-8069.                                                 | 5.2  | 47        |
| 64 | Online Digital Holographic Method for Interface Reaction Monitoring in Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2017, 121, 24733-24739.                                                                                 | 1.5  | 13        |
| 65 | A Pralineâ€Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur<br>Batteries. Small, 2017, 13, 1700357.                                                                                                    | 5.2  | 37        |
| 66 | High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead<br>Halide Perovskite Films. Journal of Physical Chemistry C, 2017, 121, 15318-15325.                                                         | 1.5  | 50        |
| 67 | Li-S-Batteries: Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive<br>Brush (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8564-8564.                                             | 7.8  | 4         |
| 68 | Mesoporous Co <sub>3</sub> V <sub>2</sub> O <sub>8</sub> nanoparticles grown on reduced graphene<br>oxide as a high-rate and long-life anode material for lithium-ion batteries. Journal of Materials<br>Chemistry A, 2016, 4, 6264-6270. | 5.2  | 88        |
| 69 | Ultra-small B <sub>2</sub> O <sub>3</sub> nanocrystals grown in situ on highly porous carbon<br>microtubes for lithium–iodine and lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4,<br>8541-8547.                      | 5.2  | 74        |
| 70 | Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction<br>solar cells by micro-flowing anti-solvent deposition in air. Journal of Materials Chemistry A, 2016, 4,<br>6295-6303.                 | 5.2  | 61        |
| 71 | Construction of sandwich-type hybrid structures by anchoring mesoporous ZnMn2O4 nanofoams on reduced graphene oxide with highly enhanced capability. Journal of Materials Chemistry A, 2016, 4, 10419-10424.                              | 5.2  | 45        |
| 72 | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Scientific Reports, 2016, 6, 37752.                                                       | 1.6  | 58        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | <i>P</i> -type transparent conducting oxides. Journal of Physics Condensed Matter, 2016, 28, 383002.                                                                                                                   | 0.7 | 274       |
| 74 | Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors. Nano Energy, 2016, 27, 457-465.                                                                                                      | 8.2 | 127       |
| 75 | Advanced Lithium–Sulfur Batteries Enabled by a Bioâ€inspired Polysulfide Adsorptive Brush. Advanced<br>Functional Materials, 2016, 26, 8418-8426.                                                                      | 7.8 | 120       |
| 76 | Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability.<br>Nano Energy, 2016, 26, 438-445.                                                                             | 8.2 | 35        |
| 77 | Rational Design of NiCoO <sub>2</sub> @SnO <sub>2</sub> Heterostructure Attached on Amorphous<br>Carbon Nanotubes with Improved Lithium Storage Properties. ACS Applied Materials & Interfaces,<br>2016, 8, 6004-6010. | 4.0 | 44        |
| 78 | A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon, 2016, 99, 633-641.                                                                                          | 5.4 | 77        |
| 79 | Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and<br>-power lithium–sulfur batteries. Journal of Power Sources, 2016, 303, 22-28.                                        | 4.0 | 180       |
| 80 | Design and synthesis of a novel d10–d10 mixed metal-based polymer with superior luminescent properties to select Ca2+ and Zn2+. Inorganic Chemistry Communication, 2015, 54, 66-68.                                    | 1.8 | 2         |
| 81 | Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a<br>lithium–sulphur battery. Nano Energy, 2015, 12, 538-546.                                                            | 8.2 | 95        |
| 82 | Tuning and understanding the phase interface of TiO <sub>2</sub> nanoparticles for more efficient lithium ion storage. Nanoscale, 2015, 7, 12833-12838.                                                                | 2.8 | 36        |
| 83 | Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2015, 3, 14188-14194.                                                 | 5.2 | 72        |
| 84 | Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy, 2015, 16, 152-162.                                                   | 8.2 | 152       |
| 85 | Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium–Sulfur<br>Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23885-23892.                                                     | 4.0 | 35        |
| 86 | Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion<br>battery electrodes with long cycle life. Carbon, 2015, 84, 491-499.                                                | 5.4 | 145       |
| 87 | Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for<br>lithium sulfur batteries. APL Materials, 2014, 2, .                                                                        | 2.2 | 76        |
| 88 | Synthesis of Semiconducting Polymer Microparticles as Solid Ionophore with Abundant Complexing<br>Sites for Long-Life Pb(II) Sensors. ACS Applied Materials & Interfaces, 2014, 6, 22096-22107.                        | 4.0 | 70        |
| 89 | Polyvinyl formal based gel polymer electrolyte prepared using initiator free in-situ thermal polymerization method. Journal of Power Sources, 2014, 245, 95-100.                                                       | 4.0 | 26        |
| 90 | Hedgehog-like hierarchical ZnO needle-clusters with superior electron transfer kinetics for dye-sensitized solar cells. RSC Advances, 2014, 4, 11430-11437.                                                            | 1.7 | 28        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Introduction of †lattice-voids' in high tap density TiO <sub>2</sub> -B nanowires for enhanced high-rate and high volumetric capacity lithium storage. RSC Advances, 2014, 4, 22989-22994. | 1.7 | 8         |
| 92 | Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 10041.                         | 5.2 | 53        |
| 93 | Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate<br>capability for rechargeable lithium sulphur batteries. Nanoscale, 2014, 6, 5746-5753.     | 2.8 | 166       |
| 94 | Graphene-wrapped sulfur-based composite cathodes: ball-milling synthesis and high discharge capacity. RSC Advances, 2014, 4, 48438-48442.                                                  | 1.7 | 4         |
| 95 | Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur<br>batteries. Chemical Communications, 2013, 49, 2192.                                         | 2.2 | 354       |
| 96 | General synthesis and electrochemical performance of TiO2-based microspheres with core-shell structure. Materials Letters, 2012, 84, 143-146.                                              | 1.3 | 10        |
| 97 | Electrochemical lithium storage of Li–Ti–O compound calcined at different temperatures. Materials<br>Letters, 2009, 63, 304-306.                                                           | 1.3 | 5         |
| 98 | Preparation and electrochemical properties of Co–Si3N4 nanocomposites. Journal of Power Sources, 2008, 184, 657-662.                                                                       | 4.0 | 30        |