
Susanna Piluso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7424273/publications.pdf Version: 2024-02-01

SHEANNA DILLISO

#	Article	IF	CITATIONS
1	Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chemical Reviews, 2020, 120, 11028-11055.	23.0	552
2	Hydrogel-Based Bioinks for Cell Electrowriting of Well-Organized Living Structures with Micrometer-Scale Resolution. Biomacromolecules, 2021, 22, 855-866.	2.6	54
3	Rapid and cytocompatible cell-laden silk hydrogel formation <i>via</i> riboflavin-mediated crosslinking. Journal of Materials Chemistry B, 2020, 8, 9566-9575.	2.9	47
4	Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering C, 2019, 98, 1133-1144.	3.8	41
5	Hyaluronic Acid-Based Hydrogels Crosslinked by Copper-Catalyzed Azide-Alkyne Cycloaddition with Tailorable Mechanical Properties. International Journal of Artificial Organs, 2011, 34, 192-197.	0.7	32
6	Mimicking the Articular Joint with In Vitro Models. Trends in Biotechnology, 2019, 37, 1063-1077.	4.9	27
7	3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication, 2021, 13, 045008.	3.7	26
8	Design of Decorinâ€Based Peptides That Bind to Collagenâ€I and their Potential as Adhesion Moieties in Biomaterials. Angewandte Chemie - International Edition, 2015, 54, 10980-10984.	7.2	24
9	Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine. Current Pharmaceutical Design, 2017, 23, 281-294.	0.9	20
10	Engineered Three-Dimensional Microenvironments with Starch Nanocrystals as Cell-Instructive Materials. Biomacromolecules, 2019, 20, 3819-3830.	2.6	19
11	Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation. European Polymer Journal, 2018, 100, 77-85.	2.6	16
12	Site-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool. Soft Matter, 2013, 9, 6752.	1.2	14
13	The Importance of Interfaces in Multiâ€Material Biofabricated Tissue Structures. Advanced Healthcare Materials, 2021, 10, e2101021.	3.9	12
14	Enzymatic action as switch of bulk to surface degradation of clicked gelatinâ€based networks. Polymers for Advanced Technologies, 2017, 28, 1318-1324.	1.6	10
15	Robust gelatin hydrogels for local sustained release of bupivacaine following spinal surgery. Acta Biomaterialia, 2022, 146, 145-158.	4.1	5
16	Comparison of in vitro and in vivo Toxicity of Bupivacaine in Musculoskeletal Applications. Frontiers in Pain Research, 2021, 2, 723883.	0.9	4
17	Synthesis and Characterization of Gelatin Fragments Obtained by Controlled Degradation. Macromolecular Symposia, 2011, 309-310, 199-204.	0.4	1