
Valérie Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(ADP-ribose): novel functions for an old molecule. Nature Reviews Molecular Cell Biology, 2006, 7, 517-528.	16.1	1,719
2	XRCC1 Is Specifically Associated with Poly(ADP-Ribose) Polymerase and Negatively Regulates Its Activity following DNA Damage. Molecular and Cellular Biology, 1998, 18, 3563-3571.	1.1	843
3	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	7.2	673
4	PARP-2, A Novel Mammalian DNA Damage-dependent Poly(ADP-ribose) Polymerase. Journal of Biological Chemistry, 1999, 274, 17860-17868.	1.6	644
5	Poly(ADP-ribose) Polymerase-2 (PARP-2) Is Required for Efficient Base Excision DNA Repair in Association with PARP-1 and XRCC1. Journal of Biological Chemistry, 2002, 277, 23028-23036.	1.6	602
6	Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO Journal, 2003, 22, 2255-2263.	3.5	544
7	Base Excision Repair Is Impaired in Mammalian Cells Lacking Poly(ADP-ribose) Polymerase-1â€. Biochemistry, 2000, 39, 7559-7569.	1.2	440
8	The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochemical Pharmacology, 2012, 84, 137-146.	2.0	428
9	Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie, 1999, 81, 69-75.	1.3	317
10	Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Research, 2007, 35, 7665-7675.	6.5	271
11	Poly(ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3. Experimental Cell Research, 2014, 329, 18-25.	1.2	238
12	Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO Journal, 2006, 25, 1305-1314.	3.5	237
13	Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2783-2788.	3.3	235
14	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	7.2	231
15	A Nuclear Poly(ADP-Ribose)-Dependent Signalosome Confers DNA Damage-Induced lκB Kinase Activation. Molecular Cell, 2009, 36, 365-378.	4.5	216
16	Structure and function of poly(ADP-ribose) polymerase. Molecular and Cellular Biochemistry, 1994, 138, 15-24.	1.4	203
17	A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4753-4757.	3.3	203
18	Functional Interaction between Poly(ADP-Ribose) Polymerase 2 (PARP-2) and TRF2: PARP Activity Negatively Regulates TRF2. Molecular and Cellular Biology, 2004, 24, 1595-1607.	1.1	166

Valérie Schreiber

#	Article	IF	CITATIONS
19	PARP1–TDP1 coupling for the repair of topoisomerase l–induced DNA damage. Nucleic Acids Research, 2014, 42, 4435-4449.	6.5	163
20	PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. Journal of Cell Science, 2005, 118, 211-222.	1.2	156
21	Poly(ADPâ€ribose) Polymerase–1 Activation During DNA Damage and Repair. Methods in Enzymology, 2006, 409, 493-510.	0.4	150
22	Toward specific functions of poly(ADP-ribose) polymerase-2. Trends in Molecular Medicine, 2008, 14, 169-178.	3.5	142
23	The expanding field of poly(ADPâ€ribosyl)ation reactions. EMBO Reports, 2008, 9, 1094-1100.	2.0	140
24	Laspâ€l (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS Letters, 1995, 373, 245-249.	1.3	132
25	Radiation-induced mitotic catastrophe in PARG-deficient cells. Journal of Cell Science, 2009, 122, 1990-2002.	1.2	114
26	PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO Journal, 2006, 25, 4350-4360.	3.5	112
27	PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Research, 2011, 39, 5045-5056.	6.5	108
28	PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres. Molecular Biology of the Cell, 2006, 17, 1686-1696.	0.9	106
29	PARP-1 transcriptional activity is regulated by sumoylation upon heat shock. EMBO Journal, 2009, 28, 3534-3548.	3.5	103
30	Poly(ADP-ribose) polymerase: Molecular biological aspects. BioEssays, 1991, 13, 455-462.	1.2	99
31	Peroxisome Proliferator-activated Receptor (PPAR)-2 Controls Adipocyte Differentiation and Adipose Tissue Function through the Regulation of the Activity of the Retinoid X Receptor/PPARÎ ³ Heterodimer. Journal of Biological Chemistry, 2007, 282, 37738-37746.	1.6	97
32	The role of poly(ADP-ribosyl)ation in epigenetic events. International Journal of Biochemistry and Cell Biology, 2009, 41, 60-65.	1.2	96
33	Parp-2 is required to maintain hematopoiesis following sublethal Î ³ -irradiation in mice. Blood, 2013, 122, 44-54.	0.6	96
34	PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death and Differentiation, 2015, 22, 1144-1157.	5.0	95
35	Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Research, 2004, 32, 4003-4014.	6.5	89
36	Lasp-1, a Novel Type of Actin-Binding Protein Accumulating in Cell Membrane Extensions. Molecular Medicine, 1998, 4, 675-687.	1.9	86

Valérie Schreiber

#	Article	IF	CITATIONS
37	PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Research, 2014, 42, 5616-5632.	6.5	82
38	New readers and interpretations of poly(ADP-ribosyl)ation. Trends in Biochemical Sciences, 2012, 37, 381-390.	3.7	75
39	Poly(ADP-ribose) Polymerase-1 (PARP-1) Is Required in Murine Cell Lines for Base Excision Repair of Oxidative DNA Damage in the Absence of DNA Polymerase β. Journal of Biological Chemistry, 2003, 278, 18471-18477.	1.6	71
40	PARP3 controls TGFÎ ² and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis. Oncotarget, 2016, 7, 64109-64123.	0.8	71
41	Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Seminars in Cell and Developmental Biology, 2017, 63, 92-101.	2.3	69
42	Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells. Molecular Immunology, 2008, 45, 1863-1871.	1.0	68
43	PARG is dispensable for recovery from transient replicative stress but required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress. Nucleic Acids Research, 2014, 42, 7776-7792.	6.5	58
44	Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cellular and Molecular Life Sciences, 2009, 66, 3219-3234.	2.4	53
45	Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie, 2013, 95, 1208-1215.	1.3	52
46	PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Scientific Reports, 2017, 7, 41962.	1.6	51
47	PARP-2 Interacts with TTF-1 and Regulates Expression of Surfactant Protein-B. Journal of Biological Chemistry, 2006, 281, 9600-9606.	1.6	48
48	Poly (ADP-Ribose) Glycohydrolase Regulates Retinoic Acid Receptor-Mediated Gene Expression. Molecular Cell, 2012, 48, 785-798.	4.5	48
49	Kin17, a mouse nuclear zinc finger protein that binds preferentially to curved DNA. Nucleic Acids Research, 1994, 22, 4335-4341.	6.5	44
50	Autophagy requires poly(adp-ribosyl)ation-dependent AMPK nuclear export. Cell Death and Differentiation, 2016, 23, 2007-2018.	5.0	44
51	A Bidirectional Promoter Connects the Poly(ADP-ribose) Polymerase 2 (PARP-2) Gene to the Gene for RNase P RNA. Journal of Biological Chemistry, 2001, 276, 11092-11099.	1.6	43
52	Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription. Human Molecular Genetics, 2006, 15, 2239-2249.	1.4	40
53	Poly(ADP-ribose) Polymerase 1 (PARP1) Associates with E3 Ubiquitin-Protein Ligase UHRF1 and Modulates UHRF1 Biological Functions. Journal of Biological Chemistry, 2014, 289, 16223-16238.	1.6	39
54	Rfx6 promotes the differentiation of peptide-secreting enteroendocrine cells whileÂrepressing genetic programs controllingÂserotonin production. Molecular Metabolism, 2019, 29, 24-39.	3.0	39

VALéRIE SCHREIBER

#	Article	IF	CITATIONS
55	The expanding field of poly(ADPâ€ribosyl)ation reactions. â€ [~] Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Reports, 2008, 9, 1252-1252.	2.0	35
56	Chromosomal assignment and expression pattern of the murine Lasp-1 gene. Gene, 1998, 207, 171-175.	1.0	31
57	XRCC1 interacts with the p58 subunit of DNA Pol α-primase and may coordinate DNA repair and replication during S phase. Nucleic Acids Research, 2009, 37, 3177-3188.	6.5	28
58	Functional aspects of PARylation in induced and programmed DNA repair processes: Preserving genome integrity and modulating physiological events. Molecular Aspects of Medicine, 2013, 34, 1138-1152.	2.7	28
59	Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure. Journal of Biological Chemistry, 2016, 291, 4873-4881.	1.6	28
60	The macroPARP genes <i>parpâ€9</i> and <i>parpâ€14</i> are developmentally and differentially regulated in mouse tissues. Developmental Dynamics, 2008, 237, 209-215.	0.8	25
61	Activation of the abundant nuclear factor poly(ADP-ribose) polymerase-1 by Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19998-20003.	3.3	25
62	Genetic Ablation of PARP-1 Protects Against Oxazolone-Induced Contact Hypersensitivity by Modulating Oxidative Stress. Journal of Investigative Dermatology, 2010, 130, 2629-2637.	0.3	23
63	PARP3, a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers. Cell Death and Differentiation, 2019, 26, 1615-1630.	5.0	23
64	Phenotypic Characterization of Parp-1 and Parp-2 Deficient Mice and Cells. Methods in Molecular Biology, 2011, 780, 313-336.	0.4	23
65	Functional interaction between human papillomavirus type 18 E2 and poly(ADP-ribose) polymerase 1. Oncogene, 2002, 21, 5877-5885.	2.6	22
66	Purification of Recombinant Poly(ADP-Ribose) Polymerases. Methods in Molecular Biology, 2011, 780, 135-152.	0.4	22
67	PARG deficiency is neither synthetic lethal with BRCA1 nor PTEN deficiency. Cancer Cell International, 2016, 16, 53.	1.8	20
68	Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network. Molecular Metabolism, 2021, 53, 101313.	3.0	20
69	Poly(ADP-ribose) polymerase: Structure-function relationship. Biochimie, 1995, 77, 456-461.	1.3	19
70	Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2. Experimental Cell Research, 2009, 315, 2824-2834.	1.2	19
71	Detection of the Nuclear Poly(ADP-ribose)-Metabolizing Enzymes and Activities in Response to DNA Damage. Methods in Molecular Biology, 2008, 464, 267-283.	0.4	15
72	A eukaryotic expression vector for the study of nuclear localization signals. Gene, 1994, 150, 411-412.	1.0	10

#	Article	IF	CITATIONS
73	Robust immunoglobulin class switch recombination and end joining in <i>Parp9</i> â€deficient mice. European Journal of Immunology, 2017, 47, 665-676.	1.6	8
74	PARP-2: Structure-Function Relationship. , 2006, , 13-31.		6
75	Purification of Recombinant Human PARG and Activity Assays. Methods in Molecular Biology, 2017, 1608, 395-413.	0.4	6
76	Discovery of the PARP Superfamily and Focus on the Lesser Exhibited But Not Lesser Talented Members. Cancer Drug Discovery and Development, 2015, , 15-46.	0.2	3
77	Purification of Recombinant Human PARP-3. Methods in Molecular Biology, 2017, 1608, 373-394.	0.4	1