Alessandra Napolitano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423711/publications.pdf

Version: 2024-02-01

255 papers

11,901 citations

53 h-index 95

g-index

268 all docs 268 docs citations

268 times ranked

10444 citing authors

#	Article	IF	CITATIONS
1	Identification of black sturgeon caviar pigment as eumelanin. Food Chemistry, 2022, 373, 131474.	8.2	5
2	A cyanine-type homolog of the red hair bibenzothiazine chromophore combining reversible proton-sensing with a hydrophobic-to-hydrophilic switching response. Dyes and Pigments, 2022, 197, 109872.	3.7	3
3	Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Molecular Nutrition and Food Research, 2022, 66, e2100670.	3.3	48
4	Condensed Tannins, a Viable Solution To Meet the Need for Sustainable and Effective Multifunctionality in Food Packaging: Structure, Sources, and Properties. Journal of Agricultural and Food Chemistry, 2022, 70, 751-758.	5.2	15
5	Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules, 2022, 12, 90.	4.0	14
6	Disentangling the Puzzling Regiochemistry of Thiol Addition to <i>o</i> -Quinones. Journal of Organic Chemistry, 2022, 87, 4580-4589.	3.2	11
7	A tunable deep eutectic solvent-based processing for valorization of chestnut wood fiber as a source of ellagic acid and lignin. Journal of Environmental Chemical Engineering, 2022, 10, 107773.	6.7	9
8	Non-covalent small molecule partnership for redox-active films: Beyond polydopamine technology. Journal of Colloid and Interface Science, 2022, 624, 400-410.	9.4	3
9	Sulfated Oligomers of Tyrosol: Toward a New Class of Bioinspired Nonsaccharidic Anticoagulants. Biomacromolecules, 2021, 22, 399-409.	5.4	4
10	Pectin-Based Formulations for Controlled Release of an Ellagic Acid Salt with High Solubility Profile in Physiological Media. Molecules, 2021, 26, 433.	3.8	8
11	A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chemistry, 2021, 348, 129152.	8.2	9
12	Natureâ€Inspired Functional Chromophores from Biomimetic o â€Quinone Chemistry. European Journal of Organic Chemistry, 2021, 2021, 2982-2989.	2.4	10
13	Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with Pecan (Carya illinoinensis) nut shell extract. Food Packaging and Shelf Life, 2021, 29, 100710.	7. 5	20
14	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie, 2020, 132, 11292-11301.	2.0	14
15	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie - International Edition, 2020, 59, 11196-11205.	13.8	121
16	Redox Activities of Melanins Investigated by Electrochemical Reverse Engineering: Implications for their Roles in Oxidative Stress. Journal of Investigative Dermatology, 2020, 140, 537-543.	0.7	20
17	Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Marine Drugs, 2020, 18, 477.	4.6	15
18	A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (Î^-PDA) Thin Films from Tyramine. International Journal of Molecular Sciences, 2020, 21, 4873.	4.1	12

#	Article	IF	CITATIONS
19	Hydrolyzable vs. Condensed Wood Tannins for Bio-based Antioxidant Coatings: Superior Properties of Quebracho Tannins. Antioxidants, 2020, 9, 804.	5.1	12
20	Bioinspired Heterocyclic Partnership in a Cyanine-Type Acidichromic Chromophore. Molecules, 2020, 25, 3817.	3.8	6
21	Proton-Sensitive Free-Radical Dimer Evolution Is a Critical Control Point for the Synthesis of Δ ^{2,2[′]} -Bibenzothiazines. Journal of Organic Chemistry, 2020, 85, 11440-11448.	3.2	5
22	Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers, 2020, 12, 2544.	4.5	10
23	Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Frontiers in Nutrition, 2020, 7, 60.	3.7	208
24	Silver nanoparticles on hydrolyzed spent coffee grounds (HSCG) for green antibacterial devices. Journal of Cleaner Production, 2020, 268, 122352.	9.3	21
25	Gelatin-Based Hydrogels for the Controlled Release of 5,6-Dihydroxyindole-2-Carboxylic Acid, a Melanin-Related Metabolite with Potent Antioxidant Activity. Antioxidants, 2020, 9, 245.	5.1	10
26	"Blackness―is an index of redox complexity in melanin polymers. Polymer Chemistry, 2020, 11, 5005-5010.	3.9	18
27	A Melanin-Related Phenolic Polymer with Potent Photoprotective and Antioxidant Activities for Dermo-Cosmetic Applications. Antioxidants, 2020, 9, 270.	5.1	31
28	Pecan (<i>Carya illinoinensis</i> (Wagenh.) K. Koch) Nut Shell as an Accessible Polyphenol Source for Active Packaging and Food Colorant Stabilization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6700-6712.	6.7	25
29	Antioxidant Properties of Agri-Food Byproducts and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants, 2020, 9, 438.	5.1	30
30	Pyrroles and Their Benzo Derivatives: Applications. , 2020, , .		0
31	Reaction-Based, Fluorescent Film Deposition from Dopamine and a Diamine-Tethered, Bis–Resorcinol Coupler. International Journal of Molecular Sciences, 2019, 20, 4532.	4.1	3
32	Ellagic Acid Recovery by Solid State Fermentation of Pomegranate Wastes by Aspergillus niger and Saccharomyces cerevisiae: A Comparison. Molecules, 2019, 24, 3689.	3.8	29
33	Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics, 2019, 6, 57.	3.3	107
34	Hexamethylenediamine-Mediated Polydopamine Film Deposition: Inhibition by Resorcinol as a Strategy for Mapping Quinone Targeting Mechanisms. Frontiers in Chemistry, 2019, 7, 407.	3.6	16
35	A Robust Fungal Allomelanin Mimic: An Antioxidant and Potent Ï€â€Electron Donor with Freeâ€Radical Properties that can be Tuned by Ionic Liquids. ChemPlusChem, 2019, 84, 1331-1337.	2.8	24
36	Redox Is a Global Biodevice Information Processing Modality. Proceedings of the IEEE, 2019, 107, 1402-1424.	21.3	37

#	Article	IF	CITATIONS
37	Exhausted Woods from Tannin Extraction as an Unexplored Waste Biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants, 2019, 8, 84.	5.1	20
38	Unimolecular Variant of the Fluorescence Turn-On Oxidative Coupling of Catecholamines with Resorcinols. ACS Omega, 2019, 4, 1541-1548.	3.5	12
39	Characterization and Fate of Hydrogen-Bonded Free-Radical Intermediates and Their Coupling Products from the Hydrogen Atom Transfer Agent 1,8-Naphthalenediol. ACS Omega, 2018, 3, 3918-3927.	3.5	28
40	Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6â€dihydroxyindoleâ€2â€carboxylic acid. Pigment Cell and Melanoma Research, 2018, 31, 475-483.	3.3	27
41	Structural Basis of Polydopamine Film Formation: Probing 5,6-Dihydroxyindole-Based Eumelanin Type Units and the Porphyrin Issue. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7670-7680.	8.0	96
42	Fermented pomegranate wastes as sustainable source of ellagic acid: Antioxidant properties, anti-inflammatory action, and controlled release under simulated digestion conditions. Food Chemistry, 2018, 246, 129-136.	8.2	58
43	The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay. Biomimetics, 2018, 3, 26.	3.3	94
44	Skin Pigmentation: Is the Control of Melanogenesis a Target within Reach?. International Journal of Molecular Sciences, 2018, 19, 4040.	4.1	4
45	Powering the Activity of Natural Phenol Compounds by Bioinspired Chemical Manipulation. ACS Symposium Series, 2018, , 407-426.	0.5	О
46	Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules, 2018, 23, 676.	3.8	16
47	Anti-Inflammatory Activity of Marine Ovothiol A in an <i>In Vitro</i> Model of Endothelial Dysfunction Induced by Hyperglycemia. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	31
48	Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5-S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	4.0	15
49	Disentangling structure-dependent antioxidant mechanisms in phenolic polymers by multiparametric EPR analysis. Chemical Communications, 2018, 54, 9426-9429.	4.1	26
50	Conjugation with Dihydrolipoic Acid Imparts Caffeic Acid Ester Potent Inhibitory Effect on Dopa Oxidase Activity of Human Tyrosinase. International Journal of Molecular Sciences, 2018, 19, 2156.	4.1	15
51	The Late Stages of Melanogenesis: Exploring the Chemical Facets and the Application Opportunities. International Journal of Molecular Sciences, 2018, 19, 1753.	4.1	52
52	Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions. ACS Earth and Space Chemistry, 2018, 2, 977-1000.	2.7	16
53	Reverse Engineering To Characterize Redox Properties: Revealing Melanin's Redox Activity through Mediated Electrochemical Probing. Chemistry of Materials, 2018, 30, 5814-5826.	6.7	36
54	Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Scientific Reports, 2017, 7, 41532.	3.3	63

#	Article	IF	Citations
55	Lightâ€independent proâ€inflammatory and proâ€oxidant effects of purified human hair melanins on keratinocyte cell cultures. Experimental Dermatology, 2017, 26, 592-594.	2.9	11
56	Multifunctional Thin Films and Coatings from Caffeic Acid and a Cross-Linking Diamine. Langmuir, 2017, 33, 2096-2102.	3.5	41
57	Stable Benzacridine Pigments by Oxidative Coupling of Chlorogenic Acid with Amino Acids and Proteins: Toward Natural Product-Based Green Food Coloring. Journal of Agricultural and Food Chemistry, 2017, 65, 6519-6528.	5.2	17
58	The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chemical Neuroscience, 2017, 8, 2766-2777.	3.5	11
59	Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chemico-Biological Interactions, 2017, 275, 13-21.	4.0	14
60	Epilutein for Early-Stage Age-Related Macular Degeneration: A Randomized and Prospective Study. Ophthalmic Research, 2017, 58, 231-241.	1.9	8
61	High Antioxidant Action and Prebiotic Activity of Hydrolyzed Spent Coffee Grounds (HSCG) in a Simulated Digestion–Fermentation Model: Toward the Development of a Novel Food Supplement. Journal of Agricultural and Food Chemistry, 2017, 65, 6452-6459.	5. 2	33
62	Natural Phenol Polymers: Recent Advances in Food and Health Applications. Antioxidants, 2017, 6, 30.	5.1	75
63	2-S-Lipoylcaffeic Acid, a Natural Product-Based Entry to Tyrosinase Inhibition via Catechol Manipulation. Biomimetics, 2017, 2, 15.	3.3	8
64	Kaxiras's Porphyrin: DFT Modeling of Redox-Tuned Optical and Electronic Properties in a Theoretically Designed Catechol-Based Bioinspired Platform. Biomimetics, 2017, 2, 21.	3.3	7
65	Replacing Nitrogen by Sulfur: From Structurally Disordered Eumelanins to Regioregular Thiomelanin Polymers. International Journal of Molecular Sciences, 2017, 18, 2169.	4.1	13
66	"Fifty Shades―of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties. International Journal of Molecular Sciences, 2016, 17, 746.	4.1	99
67	Shedding light on ovothiol biosynthesis in marine metazoans. Scientific Reports, 2016, 6, 21506.	3.3	44
68	Melanin pigmentation control by 1,3â€thiazolidines: does <scp>NO</scp> scavenging play a critical role?. Experimental Dermatology, 2016, 25, 596-597.	2.9	5
69	Nanoscale Disassembly and Free Radical Reorganization of Polydopamine in Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 11942-11950.	2.6	15
70	Eumelanin-Based Organic Bioelectronics: Myth or Reality?. MRS Advances, 2016, 1, 3801-3810.	0.9	11
71	Paraquat–Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering. ACS Chemical Neuroscience, 2016, 7, 1057-1067.	3.5	20
72	Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization. RSC Advances, 2016, 6, 2993-3002.	3.6	10

#	Article	IF	Citations
73	Efficient Binding of Heavy Metals by Black Sesame Pigment: Toward Innovative Dietary Strategies To Prevent Bioaccumulation. Journal of Agricultural and Food Chemistry, 2016, 64, 890-897.	5.2	26
74	A Superior All-Natural Antioxidant Biomaterial from Spent Coffee Grounds for Polymer Stabilization, Cell Protection, and Food Lipid Preservation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1169-1179.	6.7	50
75	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	3.3	347
76	Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism. Scientific Reports, 2015, 5, 18447.	3.3	67
77	Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography. ChemistryOpen, 2015, 4, 370-377.	1.9	6
78	The Chemistry of Coffee Furans and Hydroxycinnamates under Simulated Gastric Conditions. , 2015, , 877-886.		1
79	A water-soluble eumelanin polymer with typical polyelectrolyte behaviour by triethyleneglycol N-functionalization. Journal of Materials Chemistry C, 2015, 3, 2810-2816.	5. 5	26
80	Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Organic and Biomolecular Chemistry, 2015, 13, 5757-5764.	2.8	46
81	Tailoring melanins for bioelectronics: polycysteinyldopamine as an ion conducting redox-responsive polydopamine variant for pro-oxidant thin films. Journal of Materials Chemistry C, 2015, 3, 6525-6531.	5 . 5	15
82	Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line. Marine Drugs, 2014, 12, 4069-4085.	4. 6	63
83	Towards Eumelanin@Zeolite Hybrids: Poreâ€Sizeâ€Controlled 5,6â€Dihydroxyindole Polymerization. Chemistry - A European Journal, 2014, 20, 1597-1601.	3.3	18
84	Pheomelaninâ€induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell and Melanoma Research, 2014, 27, 721-733.	3. 3	116
85	Red human hair pheomelanin is a potent proâ€oxidant mediating <scp>UV</scp> â€independent contributory mechanisms of melanomagenesis. Pigment Cell and Melanoma Research, 2014, 27, 244-252.	3.3	97
86	Polydopamine and Eumelanin: From Structure–Property Relationships to a Unified Tailoring Strategy. Accounts of Chemical Research, 2014, 47, 3541-3550.	15.6	514
87	Photochemistry of Pheomelanin Building Blocks and Model Chromophores: Excited-State Intra- and Intermolecular Proton Transfer. Journal of Physical Chemistry Letters, 2014, 5, 2094-2100.	4.6	17
88	An Antioxidant Bioinspired Phenolic Polymer for Efficient Stabilization of Polyethylene. Biomacromolecules, 2014, 15, 302-310.	5.4	48
89	A Photoresponsive Redâ€Hairâ€Inspired Polydopamineâ€Based Copolymer for Hybrid Photocapacitive Sensors. Advanced Functional Materials, 2014, 24, 7161-7172.	14.9	16
90	Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir, 2014, 30, 9811-9818.	3.5	218

#	Article	IF	Citations
91	Artificial Biomelanin: Highly Light-Absorbing Nano-Sized Eumelanin by Biomimetic Synthesis in Chicken Egg White. Biomacromolecules, 2014, 15, 3811-3816.	5.4	30
92	5- <i>>S</i> -Lipoylhydroxytyrosol, a Multidefense Antioxidant Featuring a Solvent-Tunable Peroxyl Radical-Scavenging 3-Thio-1,2-dihydroxybenzene Motif. Journal of Organic Chemistry, 2013, 78, 9857-9864.	3.2	34
93	Melanins and melanogenesis: methods, standards, protocols. Pigment Cell and Melanoma Research, 2013, 26, 616-633.	3.3	365
94	Atypical Structural and Ï€â€Electron Features of a Melanin Polymer That Lead to Superior Freeâ€Radicalâ€Scavenging Properties. Angewandte Chemie - International Edition, 2013, 52, 12684-12687.	13.8	284
95	A reappraisal of traditional apple cultivars from Southern Italy as a rich source of phenols with superior antioxidant activity. Food Chemistry, 2013, 140, 672-679.	8.2	64
96	Red-Hair-Inspired Chromogenic System Based on a Proton-Switched Dehydrogenative Free-Radical Coupling. Organic Letters, 2013, 15, 4944-4947.	4.6	14
97	Red Hair Benzothiazines and Benzothiazoles: Mutation-Inspired Chemistry in the Quest for Functionality. Accounts of Chemical Research, 2013, 46, 519-528.	15.6	74
98	Engineering polydopamine films with tailored behaviour for next-generation eumelanin-related hybrid devices. Journal of Materials Chemistry C, 2013, 1, 1018-1028.	5.5	50
99	Synthesis and Bioactivity Profile of 5- <i>S</i> -Lipoylhydroxytyrosol-Based Multidefense Antioxidants with a Sizeable (Poly)sulfide Chain. Journal of Agricultural and Food Chemistry, 2013, 61, 1710-1717.	5.2	14
100	Olive Oil Mill Wastewater for Remediation of Slag Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 724-729.	2.7	0
101	Free Radical Coupling of <i>o</i> -Semiquinones Uncovered. Journal of the American Chemical Society, 2013, 135, 12142-12149.	13.7	34
102	Buildingâ€Block Diversity in Polydopamine Underpins a Multifunctional Eumelaninâ€Type Platform Tunable Through a Quinone Control Point. Advanced Functional Materials, 2013, 23, 1331-1340.	14.9	482
103	The Eumelanin Intermediate 5,6-Dihydroxyindole-2-Carboxylic Acid Is a Messenger in the Cross-Talk among Epidermal Cells. Journal of Investigative Dermatology, 2012, 132, 1196-1205.	0.7	47
104	The fundamental building blocks of red human hair pheomelanin are isoquinoline ontaining dimers. Pigment Cell and Melanoma Research, 2012, 25, 110-112.	3.3	12
105	Effects of walnut husk washing waters and their phenolic constituents on horticultural species. Environmental Science and Pollution Research, 2012, 19, 3299-3306.	5.3	15
106	Atropodiastereoselectivity in solid state BINOL synthesis: Leads from the estradiol platform. Steroids, 2012, 77, 630-634.	1.8	0
107	Black Sesame Pigment: DPPH Assay-Guided Purification, Antioxidant/Antinitrosating Properties, and Identification of a Degradative Structural Marker. Journal of Agricultural and Food Chemistry, 2012, 60, 8895-8901.	5.2	35
108	The Î" ^{2,2′} â€Bi(2 <i>H</i> â€1,4â€benzothiazine) Structural Motif of Red Hair Pigments Revisited: Photochromism and Acidichromism in a Unique Fourâ€State System. European Journal of Organic Chemistry, 2012, 2012, 5136-5140.	2.4	10

#	Article	IF	Citations
109	Secondary Targets of Nitrite-Derived Reactive Nitrogen Species: Nitrosation/Nitration Pathways, Antioxidant Defense Mechanisms and Toxicological Implications. Chemical Research in Toxicology, 2011, 24, 2071-2092.	3.3	80
110	A melanin-inspired pro-oxidant system for dopa(mine) polymerization: mimicking the natural casing process. Chemical Communications, 2011, 47, 10308.	4.1	30
111	Uncovering the Structure of Human Red Hair Pheomelanin: Benzothiazolylthiazinodihydroisoquinolines As Key Building Blocks. Journal of Natural Products, 2011, 74, 675-682.	3.0	51
112	Is DHICA the key to dopachrome tautomerase and melanocyte functions?. Pigment Cell and Melanoma Research, 2011, 24, 248-249.	3.3	26
113	The haptenation theory of vitiligo and melanoma rejection: a closeâ€up. Experimental Dermatology, 2011, 20, 92-96.	2.9	40
114	Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis. Experimental Dermatology, 2011, 20, 288-290.	2.9	7
115	5,6â€Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European Journal of Organic Chemistry, 2011, 2011, 5501-5516.	2.4	56
116	Oxidation Chemistry of Catecholamines and Neuronal Degeneration: An Update. Current Medicinal Chemistry, 2011, 18, 1832-1845.	2.4	118
117	Reaction of dihydrolipoic acid with juglone and related naphthoquinones: unmasking of a spirocyclic 1,3-dithiane intermediate en route to naphtho[1,4]dithiepines. Tetrahedron, 2010, 66, 3912-3916.	1.9	9
118	UVâ€Dissipation Mechanisms in the Eumelanin Building Block DHICA. ChemPhysChem, 2010, 11, 2424-2431.	2.1	33
119	Zincâ€induced Structural Effects Enhance Oxygen Consumption and Superoxide Generation in Synthetic Pheomelanins on UVA/Visible Light Irradiation < sup>†< / sup>. Photochemistry and Photobiology, 2010, 86, 757-764.	2.5	41
120	5,6â€Dihydroxyindole Oxidation in Phosphate Buffer/Polyvinyl Alcohol: A New Model System for Studies of Visible Chromophore Development in Synthetic Eumelanin Polymers. Photochemistry and Photobiology, 2010, 86, 533-537.	2.5	14
121	Time-resolved EPR investigation of oxygen and temperature effects on synthetic eumelanin. Spectroscopy, 2010, 24, 289-295.	0.8	3
122	The Chemistry of Tyrosol and Hydroxytyrosol., 2010,, 1225-1232.		14
123	Cyclic Structural Motifs in 5,6-Dihydroxyindole Polymerization Uncovered: Biomimetic Modular Buildup of a Unique Five-Membered Macrocycle. Organic Letters, 2010, 12, 3250-3253.	4.6	24
124	Pheomelanin-related benzothiazole isomers in the urine of patients with diffuse melanosis of melanoma. Clinica Chimica Acta, 2010, 411, 1195-1203.	1.1	10
125	Chemical and Structural Diversity in Eumelanins: Unexplored Bioâ€Optoelectronic Materials. Angewandte Chemie - International Edition, 2009, 48, 3914-3921.	13.8	517
126	A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole. Tetrahedron, 2009, 65, 2032-2036.	1.9	26

#	Article	IF	Citations
127	Biologically inspired one-pot access routes to 4-hydroxybenzothiazole amino acids, red hair-specific markers of UV susceptibility and skin cancer risk. Tetrahedron Letters, 2009, 50, 3095-3097.	1.4	15
128	Ultrafast Excited State Dynamics of 5,6-Dihydroxyindole, A Key Eumelanin Building Block: Nonradiative Decay Mechanism. Journal of Physical Chemistry B, 2009, 113, 12575-12580.	2.6	45
129	A Reactive (i) or tho (i)-Quinone Generated by Tyrosinase-Catalyzed Oxidation of the Skin Depigmenting Agent Monobenzone: Self-Coupling and Thiol-Conjugation Reactions and Possible Implications for Melanocyte Toxicity. Chemical Research in Toxicology, 2009, 22, 1398-1405.	3.3	42
130	Differential Reactivity of Purified Bioactive Coffee Furans, Cafestol and Kahweol, with Acidic Nitrite: Product Characterization and Factors Controlling Nitrosation Versus Ring-Opening Pathways. Chemical Research in Toxicology, 2009, 22, 1922-1928.	3.3	17
131	Disentangling Eumelanin "Black Chromophore†Visible Absorption Changes As Signatures of Oxidation State- and Aggregation-Dependent Dynamic Interactions in a Model Water-Soluble 5,6-Dihydroxyindole Polymer. Journal of the American Chemical Society, 2009, 131, 15270-15275.	13.7	129
132	Lack of Visible Chromophore Development in the Pulse Radiolysis Oxidation of 5,6-Dihydroxyindole-2-carboxylic Acid Oligomers: DFT Investigation and Implications for Eumelanin Absorption Properties. Journal of Organic Chemistry, 2009, 74, 3727-3734.	3.2	44
133	Efficient Synthesis of 5,6-Dihydroxyindole Dimers, Key Eumelanin Building Blocks, by a Unified o-Ethynylaniline-Based Strategy for the Construction of 2-Linked Biindolyl Scaffolds. Journal of Organic Chemistry, 2009, 74, 7191-7194.	3.2	24
134	Time-resolved EPR observation of synthetic eumelanin–superoxide radical pairs. Chemical Communications, 2009, , 4977.	4.1	10
135	Isomeric cysteinyldopas provide a (photo)degradable bulk component and a robust structural element in red human hair pheomelanin. Pigment Cell and Melanoma Research, 2009, 22, 319-327.	3.3	39
136	Biomimetic nitration of the linoleic acid metabolite 13-hydroxyoctadecadienoic acid: isolation and spectral characterization of novel chain-rearranged epoxy nitro derivatives. Chemistry and Physics of Lipids, 2008, 151, 51-61.	3.2	9
137	Mild and efficient iodination of aromatic and heterocyclic compounds with the NaClO2/NaI/HCl system. Tetrahedron, 2008, 64, 234-239.	1.9	41
138	The "Benzothiazine" Chromophore of Pheomelanins: A Reassessment. Photochemistry and Photobiology, 2008, 84, 593-599.	2.5	49
139	Structural Effects on the Electronic Absorption Properties of 5,6â€Dihydroxyindole Oligomers: The Potential of an Integrated Experimental and DFT Approach to Model Eumelanin Optical Properties ^{â€} . Photochemistry and Photobiology, 2008, 84, 600-607.	2.5	39
140	Nitro-fatty Acid Formation and Signaling. Journal of Biological Chemistry, 2008, 283, 15515-15519.	3.4	239
141	Chemistry of Nitrated Lipids: Remarkable Instability of 9-Nitrolinoleic Acid in Neutral Aqueous Medium and a Novel Nitronitrate Ester Product by Concurrent Autoxidation/Nitric Oxide-Release Pathways. Journal of Organic Chemistry, 2008, 73, 7517-7525.	3.2	22
142	Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability. Journal of the American Chemical Society, 2008, 130, 17038-17043.	13.7	74
143	Plant Catechols and Their S-Glutathionyl Conjugates as Antinitrosating Agents: Expedient Synthesis and Remarkable Potency of 5-S-Glutathionylpiceatannol. Chemical Research in Toxicology, 2008, 21, 2407-2413.	3.3	28
144	Melanosis of the Urinary Bladder in a Cow. Veterinary Pathology, 2008, 45, 46-50.	1.7	8

#	Article	IF	Citations
145	Long-Lasting Pigmentation More than Its Intensity Is a Reliable Indicator of Skin Sun Resistance. Dermatology, 2007, 215, 173-179.	2.1	2
146	The First 5,6-Dihydroxyindole Tetramer by Oxidation of 5,5â€~,6,6â€~-Tetrahydroxy- 2,4â€~-biindolyl and an Unexpected Issue of Positional Reactivity en Route to Eumelanin-Related Polymers. Organic Letters, 2007, 9, 1411-1414.	4.6	80
147	Oxidation Chemistry of Norepinephrine: Partitioning of the <i>O</i> -Quinone between Competing Cyclization and Chain Breakdown Pathways and Their Roles in Melanin Formation. Chemical Research in Toxicology, 2007, 20, 1549-1555.	3.3	33
148	Nitration versus Nitrosation Chemistry of Menthofuran:  Remarkable Fragmentation and Dimerization Pathways and Expeditious Entry into Dehydromenthofurolactone. Journal of Organic Chemistry, 2007, 72, 10123-10129.	3.2	13
149	5,6-Dihydroxyindole Tetramers with "Anomalous―Interunit Bonding Patterns by Oxidative Coupling of 5,5â€~,6,6â€~-Tetrahydroxy-2,7â€~-biindolyl:  Emerging Complexities on the Way toward an Improved Model o Eumelanin Buildup. Journal of Organic Chemistry, 2007, 72, 9225-9230.)f3.2	89
150	Chemical, Pulse Radiolysis and Density Functional Studies of a New, Labile 5,6-Indolequinone and Its Semiquinone. Journal of Organic Chemistry, 2007, 72, 1595-1603.	3.2	36
151	The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology. Tetrahedron Letters, 2007, 48, 3883-3886.	1.4	24
152	The first expedient entry to the human melanogen 2-S-cysteinyldopa exploiting the anomalous regioselectivity of 3,4-dihydroxycinnamic acid–thiol conjugation. Tetrahedron Letters, 2007, 48, 7650-7652.	1.4	10
153	An easy-to-run method for routine analysis of eumelanin and pheomelanin in pigmented tissues. Pigment Cell & Melanoma Research, 2007, 20, 128-133.	3.6	40
154	Acid-Promoted Reaction of the Stilbene Antioxidant Resveratrol with Nitrite Ions: Mild Phenolic Oxidation at the 4â€~-Hydroxystiryl Sector Triggering Nitration, Dimerization, and Aldehyde-Forming Routes. Journal of Organic Chemistry, 2006, 71, 4246-4254.	3.2	19
155	Practical one-pot conversion of 17β-estradiol to 10β-hydroxy- (p-quinol) and 10β-chloro-17β-hydroxyestra-1,4-dien-3-one. Steroids, 2006, 71, 670-673.	1.8	9
156	Preparation and Oxidation Chemistry of the Catechol Estrogens: Relevance to Estrogen-Related Carcinogenesis and Potential for Drug Design. Current Bioactive Compounds, 2006, 2, 445.	0.5	0
157	The Chemical Basis of the Antinitrosating Action of Polyphenolic Cancer Chemopreventive Agents. Current Medicinal Chemistry, 2006, 13, 3133-3144.	2.4	25
158	Dopaquinone redox exchange with dihydroxyindole and dihydroxyindole carboxylic acid. Pigment Cell & Melanoma Research, 2006, 19, 443-450.	3.6	86
159	The catecholic antioxidant piceatannol is an effective nitrosation inhibitor via an unusual double bond nitration. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2238-2242.	2.2	11
160	Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. Carbohydrate Research, 2006, 341, 1828-1833.	2.3	39
161	Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway. Chemistry and Physics of Lipids, 2006, 142, 14-22.	3.2	7
162	Oxidative chemistry of the natural antioxidant hydroxytyrosol: hydrogen peroxide-dependent hydroxylation and hydroxyquinone/o-quinone coupling pathways. Tetrahedron, 2006, 62, 1273-1278.	1.9	41

#	Article	IF	CITATIONS
163	Short-Lived Quinonoid Species from 5,6-Dihydroxyindole Dimers en Route to Eumelanin Polymers:Â Integrated Chemical, Pulse Radiolytic, and Quantum Mechanical Investigation. Journal of the American Chemical Society, 2006, 128, 15490-15498.	13.7	104
164	An expedient one-pot entry to catecholestrogens and other catechol compounds via IBX-mediated phenolic oxygenation. Tetrahedron Letters, 2005, 46, 3541-3544.	1.4	51
165	Remarkable Chichibabin-type cyclotrimerisation of 3-nitrotyrosine, tyrosine and phenylalanine to 3,5-diphenylpyridine derivatives induced by hypochlorous acid. Tetrahedron Letters, 2005, 46, 6457-6460.	1.4	17
166	New insight into the oxidative chemistry of noradrenaline: competitive o-quinone cyclisation and chain fission routes leading to an unusual 4-[bis-(1H-5,6-dihydroxyindol-2-yl)methyl]-1,2-dihydroxybenzene derivative. Tetrahedron, 2005, 61, 4075-4080.	1.9	11
167	Reactions of d-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet–Spengler condensation pathways. Carbohydrate Research, 2005, 340, 2719-2727.	2.3	15
168	Free radical oxidation of coriolic acid (13-(S)-hydroxy-9Z,11E-octadecadienoic Acid). Chemistry and Physics of Lipids, 2005, 134, 161-171.	3.2	6
169	An Expedient One-Pot Entry Catecholestrogens and Other Catechol Compounds via IBX-Mediated Phenolic Oxygenation ChemInform, 2005, 36, no.	0.0	0
170	5,6-Dihydroxyindoles and Indole-5,6-diones. Advances in Heterocyclic Chemistry, 2005, 89, 1-63.	1.7	95
171	The Acid-Promoted Reaction of the Green Tea Polyphenol Epigallocatechin Gallate with Nitrite Ions. Chemical Research in Toxicology, 2005, 18 , 722 - 729 .	3.3	30
172	Tyrosinase-Catalyzed Oxidation of $17\hat{l}^2$ -Estradiol: Â Structure Elucidation of the Products Formed beyond Catechol Estrogen Quinones. Chemical Research in Toxicology, 2005, 18, 1413-1419.	3.3	20
173	Oxidative chemistry of 2-nitro and 4-nitroestradiol: Dichotomous behavior of radical intermediates and novel potential routes for oxyfunctionalization and B-ring fission of steroidal scaffolds. Steroids, 2005, 70, 543-550.	1.8	9
174	$17\hat{l}^2$ -Estradiol nitration by peroxidase/H2O2/NO2 \hat{a} ': a chemical assessment. Bioorganic and Medicinal Chemistry, 2004, 12, 2927-2936.	3.0	21
175	Tetrahydrobiisoquinoline Derivatives by Reaction of Dopamine with Glyoxal:Â A Novel Potential Degenerative Pathway of Catecholamines under Oxidative Stress Conditions. Chemical Research in Toxicology, 2004, 17, 1190-1198.	3.3	12
176	Oxidative Coupling of $17\hat{l}^2$ -Estradiol:Â Inventory of Oligomer Products and Configuration Assignment of Atropoisomeric C4-Linked Biphenyl-Type Dimers and Trimers. Journal of Organic Chemistry, 2004, 69, 5652-5659.	3.2	21
177	Acid-Induced Structural Modifications of Unsaturated Fatty Acids and Phenolic Olive Oil Constituents by Nitrite Ions:Â A Chemical Assessment. Chemical Research in Toxicology, 2004, 17, 1329-1337.	3.3	42
178	Free Radical Oxidation of (E)-Retinoic Acid by the Fenton Reagent:Â Competing Epoxidation and Oxidative Breakdown Pathways and Novel Products of 5,6-Epoxyretinoic Acid Transformation. Chemical Research in Toxicology, 2004, 17, 1716-1724.	3.3	8
179	Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research, 2004, 38, 414-422.	11.3	382
180	Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere, 2004, 54, 497-505.	8.2	306

#	Article	IF	Citations
181	Oxidative chemistry of hydroxytyrosol: isolation and characterisation of novel methanooxocinobenzodioxinone derivatives. Tetrahedron Letters, 2003, 44, 8289-8292.	1.4	31
182	A novel hydrogen peroxide-dependent oxidation pathway of dopamine via 6-hydroxydopamine. Tetrahedron, 2003, 59, 2215-2221.	1.9	15
183	1,4-Benzothiazines as Key Intermediates in the Biosynthesis of Red Hair Pigment Pheomelanins. Pigment Cell & Melanoma Research, 2003, 16, 532-539.	3. 6	33
184	Oxidative conjugation of chlorogenic acid with glutathione. Bioorganic and Medicinal Chemistry, 2003, 11, 4797-4805.	3.0	45
185	Nitrite-Induced Nitration Pathways of Retinoic Acid, 5,6-Epoxyretinoic Acid, and Their Esters under Mildly Acidic Conditions:Â Toward a Reappraisal of Retinoids as Scavengers of Reactive Nitrogen Species. Chemical Research in Toxicology, 2003, 16, 502-511.	3.3	7
186	Ni2+ enhances Fe2+/peroxide-induced oxidation of arachidonic acid and formation of geno/cytotoxic 4-hydroxynonenal: a possible contributory mechanism in nickel toxicity and allergenicity. Biochimica Et Biophysica Acta - General Subjects, 2003, 1621, 9-16.	2.4	11
187	New Insights into the Acid-Promoted Reaction of Caffeic Acid and Its Esters with Nitrite:Â Decarboxylation Drives Chain Nitrosation Pathways toward Novel Oxime Derivatives and Oxidation/Fragmentation Products Thereof. Journal of Organic Chemistry, 2002, 67, 803-810.	3.2	33
188	Reactions of Hydro(pero)xy Derivatives of Polyunsaturated Fatty Acids/Esters with Nitrite Ions under Acidic Conditions. Unusual Nitrosative Breakdown of Methyl 13-Hydro(pero)xyoctadeca-9,11-dienoate to a Novel 4-Nitro-2-oximinoalk-3-enal Product. Journal of Organic Chemistry, 2002, 67, 1125-1132.	3.2	30
189	Advanced Oxidation Chemistry of Paracetamol. UV/H2O2-Induced Hydroxylation/Degradation Pathways and 15N-Aided Inventory of Nitrogenous Breakdown Products Journal of Organic Chemistry, 2002, 67, 6143-6151.	3.2	119
190	Metal ions as potential regulatory factors in the biosynthesis of red hair pigments: a new benzothiazole intermediate in the iron or copper assisted oxidation of 5-S-cysteinyldopa. Biochimica Et Biophysica Acta - General Subjects, 2002, 1571, 157-166.	2.4	42
191	Nitrocatechols versus nitrocatecholamines as novel competitive inhibitors of neuronal nitric oxide synthase: lack of the aminoethyl side chain determines loss of tetrahydrobiopterin-antagonizing properties. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 13-16.	2.2	30
192	Nitrite-Mediated decarboxylative conjugation of caffeic acid with glutathione under mildly acidic conditions. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3547-3550.	2.2	7
193	The acid-promoted reaction of ethyl linoleate with nitrite. New insights from 15N-labelling and peculiar reactivity of a model skipped diene. Tetrahedron, 2002, 58, 5061-5067.	1.9	23
194	Oxidative Conversion of 6-Nitrocatecholamines to Nitrosating Products:Â A Possible Contributory Factor in Nitric Oxide and Catecholamine Neurotoxicity Associated with Oxidative Stress and Acidosis. Chemical Research in Toxicology, 2001, 14, 1296-1305.	3.3	18
195	Zinc-Catalyzed Oxidation of 5-S-Cysteinyldopa to 2,2â€~-Bi(2H-1,4-benzothiazine): Tracking the Biosynthetic Pathway of Trichochromes, the Characteristic Pigments of Red Hair. Journal of Organic Chemistry, 2001, 66, 6958-6966.	3.2	51
196	Development of an integrated method of skin phenotype measurement using the melanins. Melanoma Research, 2001, 11, 551-557.	1.2	28
197	Human Melanocytes and Melanomas Express Novel mRNA Isoforms of the Tyrosinase-Related Protein-2/DOPAchrome Tautomerase Gene: Molecular and Functional Characterization. Journal of Investigative Dermatology, 2000, 115, 48-56.	0.7	17
198	Microanalysis of Melanins in Mammalian Hair by Alkaline Hydrogen Peroxide Degradation: Identification of a New Structural Marker of Pheomelanins. Journal of Investigative Dermatology, 2000, 114, 1141-1147.	0.7	52

#	Article	IF	Citations
199	Oxidation of the Neurotoxin 6-Nitrodopamine and Related 4-Nitrocatechols Under Biomimetic Conditions. Tetrahedron, 2000, 56, 5941-5945.	1.9	17
200	Latanoprost Stimulates Eumelanogenesis in Iridial Melanocytes of Cynomolgus Monkeys. Pigment Cell & Melanoma Research, 2000, 13, 147-150.	3.6	42
201	New regulatory mechanisms in the biosynthesis of pheomelanins: rearrangement vs. redox exchange reaction routes of a transient 2H-1,4-benzothiazine-o-quinonimine intermediate. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 47-54.	2.4	25
202	Isolation and characterization of mammalian eumelanins from hair and irides. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 295-306.	2.4	61
203	Acid-Promoted Reactions of Ethyl Linoleate with Nitrite Ions:Â Formation and Structural Characterization of Isomeric Nitroalkene, Nitrohydroxy, and Novel 3-Nitro-1,5-hexadiene and 1,5-Dinitro-1,3-pentadiene Products. Journal of Organic Chemistry, 2000, 65, 4853-4860.	3.2	55
204	6,7-Dihydroxy-1,2,3,4-tetrahydroisoquinoline formation by iron mediated dopamine oxidation: a novel route to endogenous neurotoxins under oxidative stress conditions. Tetrahedron Letters, 1999, 40, 2833-2836.	1.4	16
205	Transient quinonimines and 1,4-benzothiazines of pheomelanogenesis: new pulse radiolytic and spectrophotometric evidence. Free Radical Biology and Medicine, 1999, 27, 521-528.	2.9	31
206	A New Insight in the Biosynthesis of Pheomelanins:Â Characterization of a Labile 1,4-Benzothiazine Intermediate. Journal of Organic Chemistry, 1999, 64, 3009-3011.	3.2	35
207	5,6-Dihydroxyindoles in the Fenton Reaction:  A Model Study of the Role of Melanin Precursors in Oxidative Stress and Hyperpigmentary Processes. Chemical Research in Toxicology, 1999, 12, 985-992.	3.3	52
208	Nitrite- and Peroxide-Dependent Oxidation Pathways of Dopamine:  6-Nitrodopamine and 6-Hydroxydopamine Formation as Potential Contributory Mechanisms of Oxidative Stress- and Nitric Oxide-Induced Neurotoxicity in Neuronal Degeneration. Chemical Research in Toxicology, 1999, 12, 1213-1222.	3.3	71
209	New Reaction Pathways of Dopamine under Oxidative Stress Conditions:Â Nonenzymatic Iron-Assisted Conversion to Norepinephrine and the Neurotoxins 6-Hydroxydopamine and 6,7-Dihydroxytetrahydroisoquinoline. Chemical Research in Toxicology, 1999, 12, 1090-1097.	3.3	60
210	Characterization of Melanins in Human Irides and Cultured Uveal Melanocytes From Eyes of Different Colors. Experimental Eye Research, 1998, 67, 293-299.	2.6	107
211	Phaeomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: a pilot study. Melanoma Research, 1998, 8, 53-58.	1.2	104
212	New directions in Parkinson's research and treatment. Expert Opinion on Therapeutic Patents, 1998, 8, 1251-1268.	5.0	3
213	Selective incorporation of the prototype melanoma seeker thiourea into nascent melanin: a chemical insight. Melanoma Research, 1997, 7, 478-485.	1.2	5
214	Iron-Mediated Generation of the Neurotoxin 6-Hydroxydopamine Quinone by Reaction of Fatty Acid Hydroperoxides with Dopamine:Â A Possible Contributory Mechanism for Neuronal Degeneration in Parkinson's Disease. Journal of Medicinal Chemistry, 1997, 40, 2211-2216.	6.4	118
215	Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation. Lipids and Lipid Metabolism, 1997, 1346, 61-68.	2.6	59
216	An integrated approach to the structure of Sepia melanin. Evidence for a high proportion of degraded 5,6-dihydroxyindole-2-carboxylic acid units in the pigment backbone. Tetrahedron, 1997, 53, 8281-8286.	1.9	117

#	Article	IF	CITATIONS
217	Identification of Partially Degraded Oligomers of 5,6-Dihydroxyindole-2-carboxylic Acid inSepia Melanin by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 368-372.	1.5	61
218	Oxidative Polymerization of the Pheomelanin Precursor 5-Hydroxy-1,4-benzothiazinylalanine:Â A New Hint to the Pigment Structure. Journal of Organic Chemistry, 1996, 61, 598-604.	3.2	49
219	Mechanism of Selective Incorporation of the Melanoma Seeker 2-Thiouracil into Growing Melanin. Journal of Medicinal Chemistry, 1996, 39, 5192-5201.	6.4	52
220	5-S-Cysteinyldopa, a diffusible product of melanocyte activity, is an efficient inhibitor of hydroxylation/oxidation reactions induced by the Fenton system. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 75-82.	2.4	31
221	Oxidative polymerisation of 5,6-dihydroxyindole-2-carboxylic acid to melanin: A new insight. Tetrahedron, 1996, 52, 7913-7920.	1.9	58
222	A Reassessment of the Structure of 5,6-Dihydroxyindole-2-carboxylic Acid Melanins by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 204-208.	1.5	20
223	Structural Analysis of Synthetic Melanins from 5,6-Dihydroxyindole by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 468-472.	1.5	59
224	New pyrrole acids by oxidative degradation of eumelanins with hydrogen peroxide. Further hints to the mechanism of pigment breakdown. Tetrahedron, 1996, 52, 8775-8780.	1.9	48
225	The first characterisation of a transient 5,6-indolequinone. Tetrahedron Letters, 1996, 37, 4241-4242.	1.4	7
226	A new benzothiazole derivative by degradation of pheomelanins with alkaline hydrogen peroxide. Tetrahedron Letters, 1996, 37, 6799-6802.	1.4	22
227	A Reassessment of the Structure of 5,6-Dihydroxyindole-2-carboxylic Acid Melanins by Matrixâ€∎ssisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 204-208.	1.5	3
228	Structural Analysis of Synthetic Melanins from 5,6-Dihydroxyindole by Matrixâ€assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 468-472.	1.5	4
229	Reaction of malondialdehyde with amine neurotransmitters. Formation and oxidation chemistry of fluorescent 1,4-dihydropyridine adducts. Tetrahedron, 1995, 51, 9501-9508.	1.9	11
230	Comparative Analysis of Melanins and Melanosomes Produced by Various Coat Color Mutants. Pigment Cell & Melanoma Research, 1995, 8, 153-163.	3.6	65
231	Oxidative degradation of melanins to pyrrole acids: A model study. Tetrahedron, 1995, 51, 5913-5920.	1.9	73
232	Generation of the Neurotoxin 6-Hydroxydopamine by Peroxidase/H2O2 Oxidation of Dopamine. Journal of Medicinal Chemistry, 1995, 38, 917-922.	6.4	92
233	Characterisation of 1,4-benzothiazine intermediates in the oxidative conversion of 5-S-cysteinyldopa to pheomelanins. Tetrahedron Letters, 1994, 35, 6365-6368.	1.4	31
234	Synthesis of Dopamines Labelled with ¹³ C in the α―or βâ€6ide Chain Position and Their Application to Structural Studies on Melanins by Solidâ€6tate NMR Spectroscopy. Liebigs Annalen Der Chemie, 1994, 1994, 563-567.	0.8	15

#	Article	lF	Citations
235	Specific incorporation of 2-thiouracil into biological melanins. Biochimica Et Biophysica Acta - General Subjects, 1994, 1200, 271-276.	2.4	16
236	Copolymerisation of 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid in melanogenesis: Isolation of a cross-coupling product. Tetrahedron Letters, 1993, 34, 885-888.	1.4	23
237	Oxidation chemistry of 5,6-dihydroxy-2-methylindole. Tetrahedron, 1993, 49, 9143-9150.	1.9	10
238	Inhibitory effect of melanin precursors on arachidonic acid peroxidation. Lipids and Lipid Metabolism, 1993, 1168, 175-180.	2.6	24
239	Photodynamic degradation of vitamin E induced by psoralens. Biochimica Et Biophysica Acta - General Subjects, 1992, 1116, 291-296.	2.4	8
240	A new oxidation pathway of the neurotoxin 6-aminodopamine. Isolation and characterisation of a dimer with a tetrahydro [3,4a] iminoethanophenoxazine ring system Tetrahedron, 1992, 48, 8515-8522.	1.9	41
241	2-Aryl-1,3-thiazolodines as masked sulfhydryl agents for inhibition of melanogenesis. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 416-422.	2.4	7
242	Peroxidase as an alternative to tyrosinase in the oxidative polymerization of 5,6-dihydroxyindoles to melanin(s). Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 423-430.	2.4	106
243	Biphenyltetrols and Dibenzofuranones from Oxidative Coupling of Resorcinols with 4-Alkylpyrocatechols: New Ciues to the Mechanism of Insect Cuticle Sclerotization. Helvetica Chimica Acta, 1991, 74, 1205-1212.	1.6	13
244	Oxidative coupling of dopa with resorcinol and phloroglucinol: Isolation of adducts with an unusual tetrahydromethanobenzofuro[2,3-d]azocine skeleton. Tetrahedron, 1991, 47, 6243-6250.	1.9	24
245	Regulatory Mechanisms in Melanin Pigmentation: A Biomimetic Approach. Topics in Molecular Organization and Engineering, 1991, , 55-72.	0.1	O
246	New intermediates in the oxidative polymerisation of 5,6-dihydroxyindole to melanin promoted by the peroxidase/H2O2 system. Tetrahedron, 1990, 46, 5789-5796.	1.9	61
247	Oxidation of 4-, 6- and 7-hydroxyindoles Tetrahedron, 1989, 45, 6749-6760.	1.9	16
248	Psoralens sensitize glutathione photooxidation in vitro. Biochimica Et Biophysica Acta - General Subjects, 1989, 993, 143-147.	2.4	16
249	A profile of the oxidation chemistry of 5-hydroxyindole under biomimetic conditions. Tetrahedron, 1988, 44, 7265-7270.	1.9	31
250	The Regulatory Role of Sulfhydryl Compounds in Melanogenesis. Pigment Cell & Melanoma Research, 1988, 1, 48-53.	3.6	16
251	Sulphydryl compounds in melanogenesis. Tetrahedron, 1987, 43, 5351-5356.	1.9	28
252	A reinvestigation of the reactions between 5,6-dihydroxyindoles and quinones. Tetrahedron, 1987, 43, 2749-2754.	1.9	8

#	Article	IF	CITATIONS
253	Sulphydryl compounds in melanogenesis. Tetrahedron, 1987, 43, 5357-5362.	1.9	21
254	A biosynthetic approach to the structure of eumelanins. The isolation of oligomers from 5,6-dihydroxy-1-methylindole Tetrahedron, 1986, 42, 2083-2088.	1.9	48
255	A reinvestigation of the structure of melanochrome. Tetrahedron Letters, 1985, 26, 2805-2808.	1.4	58