Stephanie Margarete Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423548/publications.pdf Version: 2024-02-01

Stephanie Margarete

#	Article	IF	CITATIONS
1	Modeling Distributional Potential of Infectious Diseases. , 2022, , 337-353.		1
2	Using centroids of spatial units in ecological niche modelling: Effects on model performance in the context of environmental data grain size. Global Ecology and Biogeography, 2021, 30, 611-621.	2.7	19
3	Chikungunya Beyond the Tropics: Where and When Do We Expect Disease Transmission in Europe?. Viruses, 2021, 13, 1024.	1.5	16
4	Deriving risk maps from epidemiological models of vector borne diseases: State-of-the-art and suggestions for best practice. Epidemics, 2020, 33, 100411.	1.5	6
5	Do we know how mosquito disease vectors will respond to climate change?. Emerging Topics in Life Sciences, 2019, 3, 115-132.	1.1	4
6	Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts. Trends in Parasitology, 2018, 34, 227-245.	1.5	78
7	Evaluating the risk for Usutu virus circulation in Europe: comparison of environmental niche models and epidemiological models. International Journal of Health Geographics, 2018, 17, 35.	1.2	23
8	Areas with High Hazard Potential for Autochthonous Transmission of Aedes albopictus-Associated Arboviruses in Germany. International Journal of Environmental Research and Public Health, 2018, 15, 1270.	1.2	19
9	Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Tropica, 2018, 188, 108-117.	0.9	31
10	Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Scientific Reports, 2017, 7, 3813.	1.6	79
11	Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerging Infectious Diseases, 2017, 23, 1994-2001.	2.0	64
12	Mapping the global geographic potential of Zika virus spread. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 559-560.	0.8	73
13	Implementing Cargo Movement into Climate Based Risk Assessment of Vector-Borne Diseases. International Journal of Environmental Research and Public Health, 2014, 11, 3360-3374.	1.2	29
14	Predicting ectotherm disease vector spread—benefits from multidisciplinary approaches and directions forward. Die Naturwissenschaften, 2013, 100, 395-405.	0.6	13
15	Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements. International Journal of Health Geographics, 2013, 12, 51.	1.2	118
16	Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. PLoS Neglected Tropical Diseases, 2013, 7, e2207.	1.3	133
17	First Assessment for the Presence of Phlebotomine Vectors in Bavaria, Southern Germany, by Combined Distribution Modeling and Field Surveys. PLoS ONE, 2013, 8, e81088.	1.1	18
18	Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites and Vectors, 2012, 5, 100.	1.0	133

STEPHANIE MARGARETE

#	Article	IF	CITATIONS
19	Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global and Planetary Change, 2011, 78, 54-64.	1.6	116
20	Combining Climatic Projections and Dispersal Ability: A Method for Estimating the Responses of Sandfly Vector Species to Climate Change. PLoS Neglected Tropical Diseases, 2011, 5, e1407.	1.3	78
21	Risk assessment of dengue virus amplification in Europe based on spatio-temporal high resolution climate change projections. Erdkunde, 2011, 65, 137-150.	0.4	23
22	High Wind Speed Prevents the Establishment of the Disease Vector Mosquito Aedes albopictus in Its Climatic Niche in Europe. Frontiers in Environmental Science, 0, 10, .	1.5	2