Angel Concheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423476/publications.pdf

Version: 2024-02-01

322 papers

14,148 citations

61 h-index 96 g-index

328 all docs 328 docs citations

times ranked

328

13925 citing authors

#	Article	IF	CITATIONS
1	Lightâ€sensitive Intelligent Drug Delivery Systems ^{â€} . Photochemistry and Photobiology, 2009, 85, 848-860.	2.5	457
2	Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 1148-1171.	13.7	428
3	Molecularly imprinted polymers for drug delivery. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 231-245.	2.3	340
4	Smart drug delivery systems: from fundamentals to the clinic. Chemical Communications, 2014, 50, 7743-7765.	4.1	329
5	Imprinted soft contact lenses as norfloxacin delivery systems. Journal of Controlled Release, 2006, 113, 236-244.	9.9	231
6	Soft Contact Lenses Capable of Sustained Delivery of Timolol. Journal of Pharmaceutical Sciences, 2002, 91, 2182-2192.	3.3	198
7	Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. Journal of Controlled Release, 2003, 86, 253-265.	9.9	185
8	Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. Journal of Controlled Release, 2005, 102, 629-641.	9.9	182
9	Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Advanced Drug Delivery Reviews, 2013, 65, 1188-1203.	13.7	168
10	Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 2002, 80, 247-257.	9.9	163
11	Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 2012, 428, 152-163.	5.2	160
12	To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs). International Journal of Molecular Sciences, 2011, 12, 4327-4347.	4.1	156
13	Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials, 2009, 30, 1348-1355.	11.4	147
14	Improving the Loading and Release of NSAIDs from pHEMA Hydrogels by Copolymerization with Functionalized Monomers. Journal of Pharmaceutical Sciences, 2007, 96, 802-813.	3.3	144
15	Supramolecular cyclodextrin-based drug nanocarriers. Chemical Communications, 2015, 51, 6275-6289.	4.1	142
16	Self-Associative Behavior and Drug-Solubilizing Ability of Poloxamine (Tetronic) Block Copolymers. Langmuir, 2008, 24, 10688-10697.	3.5	130
17	Poly(hydroxyethyl methacrylate-co-methacrylated- \hat{l}^2 -cyclodextrin) hydrogels: Synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomaterialia, 2008, 4, 745-755.	8.3	127
18	Aerogels in drug delivery: From design to application. Journal of Controlled Release, 2021, 332, 40-63.	9.9	123

#	Article	IF	Citations
19	PEO-PPO Block Copolymers for Passive Micellar Targeting and Overcoming Multidrug Resistance in Cancer Therapy. Current Drug Targets, 2011, 12, 1112-1130.	2.1	117
20	Bioinspired Imprinted PHEMA-Hydrogels for Ocular Delivery of Carbonic Anhydrase Inhibitor Drugs. Biomacromolecules, 2011, 12, 701-709.	5.4	113
21	Influence of technological variables on release of drugs from hydrophilic matrices . Drug Development and Industrial Pharmacy, 1992, 18, 1355-1375.	2.0	112
22	Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. Journal of Controlled Release, 2004, 97, 537-549.	9.9	105
23	Contact Lenses for Drug Delivery. American Journal of Drug Delivery, 2006, 4, 131-151.	0.6	105
24	New Cyclodextrin Hydrogels Cross-Linked with Diglycidylethers with a High Drug Loading and Controlled Release Ability. Pharmaceutical Research, 2006, 23, 121-130.	3.5	103
25	Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 244-252.	4.3	101
26	Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. International Journal of Pharmaceutics, 2006, 312, 66-74.	5.2	100
27	Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomaterialia, 2011, 7, 1019-1030.	8.3	99
28	Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Molecular Pharmaceutics, 2018, 15, 571-584.	4.6	99
29	Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. Journal of Controlled Release, 2001, 77, 59-75.	9.9	97
30	Estradiol sustained release from high affinity cyclodextrin hydrogelsa~†. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 55-62.	4.3	95
31	\hat{l} ±-Lipoic Acid in Soluplus \hat{A}^{\otimes} Polymeric Nanomicelles for Ocular Treatment of Diabetes-Associated Corneal Diseases. Journal of Pharmaceutical Sciences, 2016, 105, 2855-2863.	3.3	91
32	Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opinion on Drug Delivery, 2015, 12, 297-318.	5.0	90
33	Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology. Bioconjugate Chemistry, 2015, 26, 1159-1171.	3.6	89
34	Intelligent Drug Delivery Systems: Polymeric Micelles and Hydrogels. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1065-1074.	2.4	87
35	Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. Journal of Supercritical Fluids, 2010, 53, 165-173.	3.2	86
36	Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Materials Science and Engineering C, 2014, 40, 180-188.	7.3	86

#	Article	IF	Citations
37	Poloxamine-based nanomaterials for drug delivery. Frontiers in Bioscience - Elite, 2010, E2, 424-440.	1.8	82
38	Medical devices modified at the surface by \hat{l}^3 -ray grafting for drug loading and delivery. Expert Opinion on Drug Delivery, 2010, 7, 173-185.	5.0	82
39	Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. Journal of Pharmacy and Pharmacology, 2016, 68, 544-555.	2.4	82
40	Interactions of ibuprofen with cationic polysaccharides in aqueous dispersions and hydrogels. European Journal of Pharmaceutical Sciences, 2003, 20, 429-438.	4.0	81
41	\hat{l}^2 -Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydrate Polymers, 2013, 93, 449-457.	10.2	81
42	Syringeable Pluronic–α-cyclodextrin supramolecular gels for sustained delivery of vancomycin. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 103-112.	4.3	80
43	Supercritical processing of starch aerogels and aerogel-loaded poly($\hat{l}\mu$ -caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. Journal of CO2 Utilization, 2017, 18, 237-249.	6.8	80
44	Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomaterialia, 2019, 84, 49-62.	8.3	77
45	Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy. Journal of the Royal Society Interface, 2012, 9, 2059-2069.	3.4	76
46	N-alkylation of poloxamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 24-37.	4.3	73
47	Polypropylene grafted with smart polymers (PNIPAAm/PAAc) for loading and controlled release of vancomycin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 467-477.	4.3	72
48	Hydroxypropyl- \hat{l}^2 -cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydrate Polymers, 2019, 221, 55-62.	10.2	72
49	Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH. European Journal of Pharmaceutical Sciences, 2005, 24, 77-84.	4.0	71
50	Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. International Journal of Pharmaceutics, 2018, 552, 39-47.	5.2	71
51	Soft contact lenses for controlled ocular delivery: 50 years in the making. Therapeutic Delivery, 2013, 4, 1141-1161.	2.2	70
52	Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. International Journal of Pharmaceutics, 1993, 91, 133-141.	5.2	69
53	Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media Part I: Nonionic surfactants. International Journal of Pharmaceutics, 2003, 258, 165-177.	5.2	69
54	Wound dressings loaded with an anti-inflammatory juc \tilde{A}_i (Libidibia ferrea) extract using supercritical carbon dioxide technology. Journal of Supercritical Fluids, 2013, 74, 34-45.	3.2	69

#	Article	IF	Citations
55	Nanogels for regenerative medicine. Journal of Controlled Release, 2019, 313, 148-160.	9.9	68
56	A new era for sterilization based on supercritical CO ₂ technology. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 399-428.	3.4	68
57	Bioinspired drug delivery systems. Current Opinion in Biotechnology, 2013, 24, 1167-1173.	6.6	67
58	Cyclodextrins as versatile building blocks for regenerative medicine. Journal of Controlled Release, 2017, 268, 269-281.	9.9	67
59	Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. Journal of Controlled Release, 2004, 97, 537-549.	9.9	66
60	Interfacial Adsorption of Polymers and Surfactants: Implications for the Properties of Disperse Systems of Pharmaceutical Interest. Drug Development and Industrial Pharmacy, 1999, 25, 817-829.	2.0	63
61	Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 1094-1103.	4.3	63
62	Effect of country of origin on the properties of microcrystalline cellulose. International Journal of Pharmaceutics, 1993, 91, 123-131.	5.2	62
63	Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. Journal of Controlled Release, 2004, 94, 351-363.	9.9	62
64	Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano, 2022, 16, 9994-10041.	14.6	62
65	Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. International Journal of Pharmaceutics, 2015, 496, 541-550.	5.2	60
66	Dressings Loaded with Cyclodextrin–Hamamelitannin Complexes Increase ⟨i⟩Staphylococcus aureus⟨i⟩ Susceptibility Toward Antibiotics Both in Single as well as in Mixed Biofilm Communities. Macromolecular Bioscience, 2016, 16, 859-869.	4.1	60
67	Chemical structure and glass transition temperature of non-ionic cellulose ethers. Journal of Thermal Analysis and Calorimetry, 2003, 73, 587-596.	3.6	59
68	Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts. Analytica Chimica Acta, 2010, 659, 178-185.	5.4	59
69	Synergistic performance of cyclodextrin–agar hydrogels for ciprofloxacin delivery and antimicrobial effect. Carbohydrate Polymers, 2011, 85, 765-774.	10.2	59
70	Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 126-136.	4.3	59
71	Anti-biofilm multi drug-loaded 3D printed hearing aids. Materials Science and Engineering C, 2021, 119, 111606.	7.3	59
72	Biophysical Characterization of Complexation of DNA with Block Copolymers of Poly(2-dimethylaminoethyl) Methacrylate, Poly(ethylene oxide), and Poly(propylene oxide). Langmuir, 2005, 21, 5142-5148.	3 . 5	58

#	Article	IF	Citations
73	Dexamethasone eye drops containing \hat{I}^3 -cyclodextrin-based nanogels. International Journal of Pharmaceutics, 2013, 441, 507-515.	5.2	58
74	Controlled release of estradiol solubilized in carbopol/surfactant aggregates. Journal of Controlled Release, 2003, 93, 319-330.	9.9	57
75	Molecularly imprinted materials as advanced excipients for drug delivery systems. Biotechnology Annual Review, 2006, 12, 225-268.	2.1	57
76	Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomaterialia, 2012, 8, 1507-1518.	8.3	57
77	Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 397-413.	5.0	57
78	Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomaterialia, 2010, 6, 1398-1404.	8.3	56
79	Microviscosity of hydroxypropylcellulose gels as a basis for prediction of drug diffusion rates. International Journal of Pharmaceutics, 1999, 180, 91-103.	5.2	55
80	Cross-linked hydroxypropyl- \hat{l}^2 -cyclodextrin and \hat{l}^3 -cyclodextrin nanogels for drug delivery: Physicochemical and loading/release properties. Carbohydrate Polymers, 2012, 87, 2344-2351.	10.2	55
81	Hydrophobically Modified Keratin Vesicles for GSH-Responsive Intracellular Drug Release. Bioconjugate Chemistry, 2015, 26, 1900-1907.	3.6	54
82	3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate Polymers, 2022, 278, 118924.	10.2	54
83	Dexamethasone-loaded poly(É)-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. International Journal of Pharmaceutics, 2013, 456, 269-281.	5.2	53
84	Bactericidal Core-Shell Paramagnetic Nanoparticles Functionalized with Poly(hexamethylene) Tj ETQq0 0 0 rgBT	Oyerlock	10 ₅₁ f 50 302
85	Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 2013, 98, 331-340.	10.2	51
86	Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 100-110.	4.3	51
87	Stimuli-responsive materials in analytical separation. Analytical and Bioanalytical Chemistry, 2015, 407, 4927-4948.	3.7	50
88	PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomaterialia, 2015, 27, 42-52.	8.3	50
89	scCO2-foamed silk fibroin aerogel/poly(Îμ-caprolactone) scaffolds containing dexamethasone for bone regeneration. Journal of CO2 Utilization, 2019, 31, 51-64.	6.8	49
90	Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2., 2011, 21, 317-340.		49

#	Article	IF	Citations
91	Binding of Functionalized Paramagnetic Nanoparticles to Bacterial Lipopolysaccharides And DNA. Langmuir, 2010, 26, 8829-8835.	3.5	48
92	Rheological Evaluation of the Interactions between Cationic Celluloses and Carbopol 974P in Water. Biomacromolecules, 2001, 2, 886-893.	5 . 4	47
93	Polycationic Block Copolymers of Poly(ethylene oxide) and Poly(propylene oxide) for Cell Transfection. Bioconjugate Chemistry, 2005, 16, 626-633.	3.6	47
94	Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydrate Polymers, 2013, 98, 1343-1352.	10.2	47
95	Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomaterialia, 2016, 41, 302-311.	8.3	47
96	Inhibition of P-glycoprotein pumps by PEO–PPO amphiphiles: branched versus linear derivatives. Nanomedicine, 2010, 5, 1371-1383.	3.3	46
97	Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 383-391.	4.3	46
98	pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 324-332.	4.3	46
99	Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. International Journal of Pharmaceutics, 2004, 274, 233-243.	5. 2	45
100	Hydrosoluble Cyclodextrin/Poloxamer Polypseudorotaxanes at the Air/Water Interface, in Bulk Solution, and in the Gel State. Journal of Physical Chemistry B, 2009, 113, 2773-2782.	2.6	45
101	Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. International Journal of Pharmaceutics, 2014, 461, 286-295.	5.2	44
102	Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins). Molecules, 2017, 22, 230.	3.8	43
103	Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells. European Journal of Pharmaceutical Sciences, 2018, 119, 49-61.	4.0	43
104	Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling, 2011, 27, 123-135.	2.2	42
105	Targeted Combinatorial Therapy Using Gold Nanostars as Theranostic Platforms. Journal of Physical Chemistry C, 2014, 118, 26313-26323.	3.1	42
106	Poloxamer-hydroxyethyl cellulose- \hat{l}_{\pm} -cyclodextrin supramolecular gels for sustained release of griseofulvin. International Journal of Pharmaceutics, 2016, 500, 11-19.	5.2	42
107	Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017, 527, 115-125.	5.2	42
108	Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3349-3360.	8.0	42

#	Article	IF	Citations
109	Atenolol release from hydrophilic matrix tablets with hydroxypropylmethylcellulose (HPMC) mixtures as gelling agent: effects of the viscosity of the HPMC mixture. European Journal of Pharmaceutical Sciences, 1996, 4, 39-48.	4.0	41
110	Influence of polymer structure on the rheological behavior of hydroxypropylmethylcellulose-sodium carboxymethylcellulose dispersions. Colloid and Polymer Science, 2001, 279, 1045-1057.	2.1	41
111	Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiation Physics and Chemistry, 2016, 119, 37-43.	2.8	41
112	Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics, 2020, 12, 274.	4.5	41
113	Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. Journal of Controlled Release, 2020, 323, 442-462.	9.9	41
114	Novel interpenetrating smart polymer networks grafted onto polypropylene by gamma radiation for loading and delivery of vancomycin. European Polymer Journal, 2009, 45, 1859-1867.	5.4	40
115	Drug-Eluting Intraocular Lenses. Materials, 2011, 4, 1927-1940.	2.9	40
116	Hydrophilic acrylic hydrogels with built-in or pendant cyclodextrins for delivery of anti-glaucoma drugs. Carbohydrate Polymers, 2012, 88, 977-985.	10.2	40
117	Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy. Journal of Drug Delivery Science and Technology, 2017, 42, 245-254.	3.0	40
118	Temperature- and Light-Responsive Blends of Pluronic F127 and Poly(<i>N</i> , <i>N</i> -dimethylacrylamide- <i>co</i> -methacryloyloxyazobenzene). Langmuir, 2007, 23, 11475-11481.	3.5	39
119	Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts. Materials Science and Engineering C, 2017, 75, 1115-1127.	7.3	39
120	Poly(acrylic acid) microgels (carbopol \hat{A}^{\odot} 934)/surfactant interactions in aqueous media Part II: Ionic surfactants. International Journal of Pharmaceutics, 2003, 258, 179-191.	5.2	38
121	Pluronic and Tetronic Copolymers with Polyglycolyzed Oils as Self-Emulsifying Drug Delivery Systems. AAPS PharmSciTech, 2008, 9, 471-479.	3.3	38
122	Cyclodextrin-functionalized polyethylene and polypropylene as biocompatible materials for diclofenac delivery. International Journal of Pharmaceutics, 2009, 382, 183-191.	5.2	38
123	Stimuli-responsive polymers for antimicrobial therapy: drug targeting, contact-killing surfaces and competitive release. Expert Opinion on Drug Delivery, 2016, 13, 1109-1119.	5.0	38
124	PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20600-20613.	8.0	38
125	Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology. Carbohydrate Polymers, 2016, 142, 282-292.	10.2	38
126	The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate: effects on zeta potential and stability. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45, 181-188.	4.3	37

#	Article	IF	CITATIONS
127	Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. Journal of Membrane Science, 2011, 383, 60-69.	8.2	37
128	Stimuli–responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomaterialia, 2011, 7, 996-1008.	8.3	37
129	Antiviral Properties of Polymeric Aziridine- and Biguanide-Modified Core–Shell Magnetic Nanoparticles. Langmuir, 2012, 28, 4548-4558.	3.5	36
130	Antimicrobial silver-loaded polypropylene sutures modified by radiation-grafting. European Polymer Journal, 2018, 100, 290-297.	5.4	36
131	Guanidinylated Polyethyleneimineâ^'Polyoxypropyleneâ^'Polyoxyethylene Conjugates as Gene Transfection Agents. Bioconjugate Chemistry, 2009, 20, 1044-1053.	3.6	35
132	\hat{I}^3 -Cyclodextrin hydrogels and semi-interpenetrating networks for sustained delivery of dexamethasone. Carbohydrate Polymers, 2010, 80, 900-907.	10.2	35
133	Poloxamine micellar solubilization of $\hat{l}\pm$ -tocopherol for topical ocular treatment. Colloids and Surfaces B: Biointerfaces, 2013, 103, 550-557.	5.0	35
134	Supramolecular gels of poly- \hat{l} ±-cyclodextrin and PEO-based copolymers for controlled drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 579-588.	4.3	35
135	Mechanical and drug-release properties of atenolol-Carbomer hydrophilic matrix tablets. Journal of Controlled Release, 1991, 17, 267-276.	9.9	34
136	Usefulness of certain varieties of Carbomer in the formulation of hydrophilic furosemide matrices. International Journal of Pharmaceutics, 1991, 67, 113-121.	5.2	34
137	Dicalcium phosphate dihydrate and anhydrous dicalcium phosphate for direct compression: A comparative study. International Journal of Pharmaceutics, 1995, 124, 69-74.	5.2	34
138	Influence of cationic cellulose structure on its interactions with sodium dodecylsulfate: implications on the properties of the aqueous dispersions and hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 133-142.	4.3	34
139	Cyclodextrin/carbopol micro-scale interpenetrating networks (ms-IPNs) for drug delivery. Journal of Controlled Release, 2007, 123, 56-66.	9.9	34
140	Cyclosporine-loaded cross-linked inserts of sodium hyaluronan and hydroxypropyl- \hat{l}^2 -cyclodextrin for ocular administration. Carbohydrate Polymers, 2018, 201, 308-316.	10.2	34
141	Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol® pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 236-245.	4.3	33
142	Functionalization of acrylic hydrogels with \hat{l}_{\pm} -, \hat{l}_{\pm} - or \hat{l}_{\pm} -cyclodextrin modulates protein adsorption and antifungal delivery. Acta Biomaterialia, 2010, 6, 3919-3926.	8.3	33
143	Loading and Release of Drugs from Oxygenâ€rich Plasma Polymer Coatings. Plasma Processes and Polymers, 2012, 9, 540-549.	3.0	33
144	Temperature- and pH-sensitive interpenetrating polymer networks grafted on PP: Cross-linking irradiation dose as a critical variable for the performance as vancomycin-eluting systems. Radiation Physics and Chemistry, 2012, 81, 531-540.	2.8	33

#	Article	IF	CITATIONS
145	Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. International Journal of Pharmaceutics, 2017, 531, 492-503.	5.2	33
146	rAAV-mediated overexpression of TGF-β via vector delivery in polymeric micelles stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a human osteochondral defect model. International Journal of Nanomedicine, 2017, Volume 12, 6985-6996.	6.7	33
147	Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regeneration processed by compressed CO2 foaming. Journal of CO2 Utilization, 2018, 24, 89-98.	6.8	33
148	Micelle-nanogel platform for ferulic acid ocular delivery. International Journal of Pharmaceutics, 2020, 576, 118986.	5.2	33
149	Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release. Biomaterials, 2004, 25, 925-931.	11.4	32
150	Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets. Acta Materialia, 2009, 57, 295-303.	7.9	32
151	Poloxamines and Poloxamers as Polymeric Micellar Carriers for Simvastatin: Interactions at the Airâ-'Water Interface and in Bulk Solution. Journal of Physical Chemistry C, 2010, 114, 1181-1189.	3.1	32
152	Timololâ€imprinted soft contact lenses: Influence of the template: Functional monomer ratio and the hydrogel thickness. Journal of Applied Polymer Science, 2011, 122, 1333-1340.	2.6	32
153	Poloxamine–Cyclodextrin–Simvastatin Supramolecular Systems Promote Osteoblast Differentiation of Mesenchymal Stem Cells. Macromolecular Bioscience, 2013, 13, 723-734.	4.1	32
154	Influence of microcrystalline cellulose source and batch variation on the tabletting behaviour and stability of prednisone formulations. International Journal of Pharmaceutics, 1993, 91, 143-149.	5.2	31
155	Interactions between hydroxypropylcelluloses and vapour/liquid water. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 307-318.	4.3	31
156	Effects of Surfactants on Gel Behavior. American Journal of Drug Delivery, 2003, 1, 77-101.	0.6	31
157	Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose, 2012, 19, 2165-2177.	4.9	31
158	NaCl-triggered self-assembly of hydrophilic poloxamine block copolymers. International Journal of Pharmaceutics, 2015, 494, 453-462.	5.2	31
159	Drug Solubilization and Delivery from Cyclodextrin-Pluronic Aggregates. Journal of Nanoscience and Nanotechnology, 2006, 6, 3179-3186.	0.9	30
160	Calorimetric approach to tetronic/water interactions. Journal of Thermal Analysis and Calorimetry, 2007, 87, 171-178.	3.6	30
161	Antiseptic cyclodextrin-functionalized hydrogels and gauzes for loading and delivery of benzalkonium chloride. Biofouling, 2013, 29, 261-271.	2.2	30
162	Doxorubicin-loaded micelles of reverse poly(butylene oxide)–poly(ethylene oxide)–poly(butylene) Tj ETQq0 (Pharmaceutics, 2013, 445, 47-57.	0 0 rgBT /0 5.2	Overlock 10 Tf 30

10

Pharmaceutics, 2013, 445, 47-57.

#	Article	IF	CITATIONS
163	Free and copolymerized \hat{l}^3 -cyclodextrins regulate the performance of dexamethasone-loaded dextran microspheres for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 4943-4956.	5.8	30
164	Graft copolymerization by ionization radiation, characterization, and enzymatic activity of temperature-responsive SR- g -PNVCL loaded with lysozyme. Reactive and Functional Polymers, 2018, 126, 74-82.	4.1	30
165	Stimuli-sensitive cross-linked hydrogels as drug delivery systems: Impact of the drug on the responsiveness. International Journal of Pharmaceutics, 2020, 579, 119157.	5.2	30
166	Effect of Microcrystalline Cellulose Grade and Process Variables on Pellets Prepared by Extrusion–Spheronization. Drug Development and Industrial Pharmacy, 2002, 28, 451-456.	2.0	29
167	Powdered cellulose as excipient for extrusion–spheronization pellets of a cohesive hydrophobic drug. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 291-295.	4.3	29
168	Thermorheological and glass transition properties of PNIPA/PVP and PNIPA/Carbopol blends. Journal of Thermal Analysis and Calorimetry, 2004, 77, 681-693.	3.6	29
169	Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication, 2017, 9, 035002.	7.1	29
170	Cyclodextrin-based poly(pseudo)rotaxanes for transdermal delivery of carvedilol. Carbohydrate Polymers, 2018, 200, 278-288.	10.2	29
171	Modulation of Size and Shape of Au Nanoparticles Using Amino-X-Shaped Poly(ethylene) Tj ETQq1 1 0.784314 r	gBT /Over	ock 10 Tf 50
172	Singly and binary grafted poly(vinyl chloride) urinary catheters that elute ciprofloxacin and prevent bacteria adhesion. International Journal of Pharmaceutics, 2015, 488, 20-28.	5.2	28
173	Fast and Mild Strategy, Using Superhydrophobic Surfaces, to Produce Collagen/Platelet Lysate Gel Beads for Skin Regeneration. Stem Cell Reviews and Reports, 2015, 11, 161-179.	5.6	28
174	Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From "classical―chemotherapeutic nanocarriers to active cell-response inducers. Journal of Controlled Release, 2013, 167, 68-75.	9.9	27
175	Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties. Radiation Physics and Chemistry, 2015, 110, 59-66.	2.8	27
176	Syringeable Self-Assembled Cyclodextrin Gels for Drug Delivery. Current Topics in Medicinal Chemistry, 2014, 14, 494-509.	2.1	27
177	Evaluation of low-substituted hydroxypropylcelluloses (L-HPCs) as filler-binders for direct compression. International Journal of Pharmaceutics, 2000, 197, 107-116.	5.2	26
178	Thermal and FTIR Characterization of Films Obtained From Carbopol/Surfactant Aqueous Solutions. Magyar Apróvad Közlemények, 2002, 68, 479-488.	1.4	26
179	Incidence of drying on microstructure and drug release profiles from tablets of MCC–lactose–Carbopol® and MCC–dicalcium phosphate–Carbopol® pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 675-685.	4.3	26
180	Cytocompatibility and P-glycoprotein Inhibition of Block Copolymers: Structure–Activity Relationship. Molecular Pharmaceutics, 2013, 10, 3232-3241.	4.6	26

#	Article	IF	CITATIONS
181	Characterization of cyclodextrincarbopol interactions by DSC and FTIR. Journal of Thermal Analysis and Calorimetry, 2004, 77, 403-411.	3.6	25
182	Pluronic-g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets. European Journal of Pharmaceutical Sciences, 2005, 26, 374-385.	4.0	25
183	Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomaterialia, 2014, 10, 4314-4322.	8.3	25
184	Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels. International Journal of Pharmaceutics, 2015, 495, 463-473.	5.2	25
185	Encapsulation of Antioxidant Gallate Derivatives in Biocompatible Poly(Îμ-caprolactone)- <i>b</i> -Pluronic- <i>b</i> -Poly(Îμ-caprolactone) Micelles. Langmuir, 2016, 32, 3331-3339.	3.5	25
186	Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals, 2021, 14, 921.	3.8	25
187	A comparison of gas–liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers. Journal of Pharmaceutical and Biomedical Analysis, 1999, 20, 373-383.	2.8	24
188	Improved drug loading/release capacities of commercial contact lenses obtained by supercritical fluid assisted molecular imprinting methods. Journal of Controlled Release, 2010, 148, e102-e104.	9.9	24
189	Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers, 2020, 12, 2026.	4.5	24
190	Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. International Journal of Pharmaceutics, 2020, 586, 119510.	5.2	24
191	Polypropylene grafted with NIPAAm and APMA for creating hemocompatible surfaces that load/elute nalidixic acid. Reactive and Functional Polymers, 2010, 70, 836-842.	4.1	23
192	Edible chitosan/acetylated monoglyceride films for prolonged release of vitamin E and antioxidant activity. Journal of Applied Polymer Science, 2013, 129, 626-635.	2.6	23
193	UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles. RSC Smart Materials, 2013, , 304-348.	0.1	23
194	Hydrogels for diabetic eyes: Naltrexone loading, release profiles and cornea penetration. Materials Science and Engineering C, 2019, 105, 110092.	7.3	23
195	Smart Drug Release from Medical Devices. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 544-554.	2.5	23
196	Radiation grafting of poly(methyl methacrylate) and poly(vinylimidazole) onto polytetrafluoroethylene films and silver immobilization for antimicrobial performance. Applied Surface Science, 2019, 473, 951-959.	6.1	23
197	Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl) Tj ETQq $1\ 1$	0.7843 <u>1</u> 4 rgBT 5.2	1/2yerlock 1
198	Dually sensitive dextran-based micelles for methotrexate delivery. RSC Advances, 2017, 7, 14448-14460.	3.6	22

#	Article	IF	CITATIONS
199	Interlot variability of carbomer 934. International Journal of Pharmaceutics, 1993, 100, 207-212.	5.2	21
200	Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 88-106.	4.3	21
201	Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics, 2021, 13, 532.	4.5	21
202	Testing drug release from medicated contact lenses: The missing link to predict in vivo performance. Journal of Controlled Release, 2022, 343, 672-702.	9.9	21
203	Materials with Fungi-Bioinspired Surface for Efficient Binding and Fungi-Sensitive Release of Antifungal Agents. Biomacromolecules, 2014, 15, 1860-1870.	5.4	20
204	Structure-Performance Relationships of Temperature-Responsive PLGA-PEG-PLGA Gels for Sustained Release of Bone Morphogenetic Protein-2. Journal of Pharmaceutical Sciences, 2017, 106, 3353-3362.	3.3	20
205	Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability. Pharmaceutics, 2020, 12, 702.	4.5	20
206	Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opinion on Drug Delivery, 2020, 17, 1515-1518.	5.0	20
207	Atorvastatin-Eluting Contact Lenses: Effects of Molecular Imprinting and Sterilization on Drug Loading and Release. Pharmaceutics, 2021, 13, 606.	4.5	20
208	Sertaconazole-Loaded Cyclodextrin - Polysaccharide Hydrogels as Antifungal Devices§. Open Drug Delivery Journal, 2009, 3, 1-9.	2.0	20
209	Chitosan/sodium dodecylsulfate interactions. Journal of Thermal Analysis and Calorimetry, 2005, 82, 499-505.	3.6	19
210	Sustained Release Pellets Based on Poly(N-Isopropyl Acrylamide): Matrix and In Situ Photopolymerization-Coated Systems. Journal of Pharmaceutical Sciences, 2007, 96, 93-105.	3.3	19
211	Bone Regeneration Induced by an <l>ln</l> <l>Situ</l> Gel-Forming Poloxamine, Bone Morphogenetic Protein-2 System. Journal of Biomedical Nanotechnology, 2014, 10, 959-969.	1.1	19
212	Preparation of antioxidant active films based on chitosan: diffusivity study of \hat{l}_{\pm} -tocopherol into food simulants. Journal of Food Science and Technology, 2016, 53, 2817-2826.	2.8	19
213	Cyclodextrin-functionalized cellulose filter paper for selective capture of diclofenac. Carbohydrate Polymers, 2019, 220, 43-52.	10.2	19
214	Polypseudorotaxanes of Pluronic® F127 with Combinations of \hat{l}_{\pm} - and \hat{l}^2 -Cyclodextrins for Topical Formulation of Acyclovir. Nanomaterials, 2020, 10, 613.	4.1	19
215	Hyaluronan/Poly-L-lysine/Berberine Nanogels for Impaired Wound Healing. Pharmaceutics, 2021, 13, 34.	4.5	19
216	Poly(ethylene oxide)–poly(styrene oxide)–poly(ethylene oxide) copolymers: Micellization, drug solubilization, and gelling features. Journal of Colloid and Interface Science, 2012, 387, 275-284.	9.4	18

#	Article	IF	CITATIONS
217	Binary Graft Modification of Polypropylene for Antiâ€Inflammatory Drug–Device Combo Products. Journal of Pharmaceutical Sciences, 2014, 103, 1269-1277.	3.3	18
218	Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiation Physics and Chemistry, 2015, 107, 164-170.	2.8	18
219	Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers. Analytical and Bioanalytical Chemistry, 2016, 408, 6845-6856.	3.7	18
220	Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiation Physics and Chemistry, 2018, 142, 107-114.	2.8	18
221	Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Molecular Pharmaceutics, 2019, 16, 4757-4774.	4.6	18
222	The effect of country of origin on the properties of dicalcium phosphate dihydrate powder. International Journal of Pharmaceutics, 1994, 103, 9-18.	5.2	17
223	Silicone Rubber Modified with Methacrylic Acid to Host Antiseptic Drugs. Macromolecular Materials and Engineering, 2014, 299, 1240-1250.	3.6	17
224	HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings. International Journal of Pharmaceutics, 2016, 513, 518-527.	5.2	17
225	One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Designed Monomers and Polymers, 2017, 20, 33-41.	1.6	17
226	Functionalization of titanium implants with phase-transited lysozyme for gentle immobilization of antimicrobial lysozyme. Applied Surface Science, 2018, 452, 32-42.	6.1	17
227	Anandamide-nanoformulation obtained by electrospraying for cardiovascular therapy. International Journal of Pharmaceutics, 2019, 566, 1-10.	5.2	17
228	Cytosine-functionalized bioinspired hydrogels for ocular delivery of antioxidant transferulic acid. Biomaterials Science, 2020, 8, 1171-1180.	5.4	17
229	Hydrogels porosity and bacteria penetration: Where is the pore size threshold?. Journal of Membrane Science, 2010, 365, 248-255.	8.2	16
230	PP films grafted with N-isopropylacrylamide and N-(3-aminopropyl) methacrylamide by \hat{l}^3 radiation: synthesis and characterization. Radiation Physics and Chemistry, 2010, 79, 615-621.	2.8	16
231	Inclusion Complex of 4-Hydroxycoumarin with Cyclodextrins and Its Characterization in Aqueous Solution. Journal of Solution Chemistry, 2011, 40, 1835-1846.	1.2	16
232	Orodispersible Carbamazepine/Hydroxypropyl- \hat{l}^2 -Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients. AAPS PharmSciTech, 2020, 21, 39.	3.3	16
233	Molecular Weight Dependence of the Pharmacokinetic of Hydroxypropyl Methylcellulose in the Vitreous. Journal of Ocular Pharmacology and Therapeutics, 1990, 6, 137-142.	1.4	15
234	Chemical stability of acetylsalicylic acid in tablets prepared with different particle size fractions of a commercial brand of dicalcium phosphate dihydrate. International Journal of Pharmaceutics, 1995, 123, 143-144.	5.2	15

#	Article	IF	CITATIONS
235	Extrusion-Spheronization of Blends of Carbopol 934 and Microcrystalline Cellulose. Drug Development and Industrial Pharmacy, 2001, 27, 381-391.	2.0	15
236	Sertaconazole/hydroxypropyl- \hat{l}^2 -cyclodextrin complexation: Isothermal titration calorimetry and solubility approaches. Journal of Pharmaceutical Sciences, 2006, 95, 1751-1762.	3.3	15
237	Wound debridement and antibiofilm properties of gamma-ray DMAEMA-grafted onto cotton gauzes. Cellulose, 2014, 21, 3767-3779.	4.9	15
238	Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
239	Achieving antimicrobial activity through poly(N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads. MRS Communications, 2017, 7, 938-946.	1.8	15
240	RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opinion on Drug Delivery, 2018, 15, 965-982.	5.0	15
241	Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics, 2020, 12, 335.	4.5	15
242	Comparison of two varieties of microcrystalline cellulose as filler-binders I. Perdnisone tablets. Drug Development and Industrial Pharmacy, 1992, 18, 355-368.	2.0	14
243	Chemical stability of acetylsalicylic acid in tablets prepared with different commercial brands of dicalcium phosphate dihydrate. International Journal of Pharmaceutics, 1994, 107, 247-249.	5.2	14
244	Intersupplier and interlot variability in hydroxypropyl celluloses: implications for theophylline release from matrix tablets. Pharmaceutica Acta Helvetiae, 1998, 73, 113-120.	1.2	14
245	Adsorption of polysorbate 80 on pyrantel pamoate: effects on suspension stability. International Journal of Pharmaceutics, 1998, 165, 211-216.	5.2	14
246	The Stability of Theophylline Tablets with a Hydroxypropylcellulose Matrix. Drug Development and Industrial Pharmacy, 2000, 26, 13-20.	2.0	14
247	Polymeric micelles as drug stabilizers: the camptothecin and simvastatin cases. Journal of Drug Delivery Science and Technology, 2010, 20, 249-257.	3.0	14
248	Ionic and Polyampholyte N-Isopropylacrylamide-Based Hydrogels Prepared in the Presence of Imprinting Ligands: Stimuli-Responsiveness and Adsorption/Release Properties. Journal of Functional Biomaterials, 2011, 2, 373-390.	4.4	14
249	Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids and Surfaces B: Biointerfaces, 2015, 133, 270-277.	5.0	14
250	Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
251	Low viscosity-PLGA scaffolds by compressed CO ₂ foaming for growth factor delivery. RSC Advances, 2016, 6, 70510-70519.	3.6	14
252	Temperature-sensitive biocompatible IPN hydrogels based on poly(NIPA-PEGdma) and photocrosslinkable gelatin methacrylate. Soft Materials, 2017, 15, 341-349.	1.7	14

#	Article	IF	CITATIONS
253	Mobility of Water and Polymer Species and Rheological Properties of Supramolecular Polypseudorotaxane Gels Suitable for Bone Regeneration. Bioconjugate Chemistry, 2018, 29, 503-516.	3 . 6	14
254	Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs. Cellulose, 2020, 27, 2785-2801.	4.9	14
255	Comparison of two Varieties of Microcrystalline Cellulose as Filler-Binders II. Hydrochlorothiazide Tablets. Drug Development and Industrial Pharmacy, 1993, 19, 1211-1220.	2.0	13
256	Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 281-292.	4.3	13
257	Radiation-grafting of N-vinylcaprolactam and 2-hydroxyethyl methacrylate onto polypropylene films to obtain a thermo-responsive drug delivery system. Radiation Physics and Chemistry, 2019, 157, 6-14.	2.8	13
258	Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. Journal of Controlled Release, 2022, 348, 431-443.	9.9	13
259	Interactions between liposomes and hydroxypropylmethylcellulose. International Journal of Pharmaceutics, 2000, 203, 99-108.	5.2	12
260	Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 629-641.	3.5	12
261	In situ photopolymerization-coated pellets for pH-dependent drug delivery. European Polymer Journal, 2008, 44, 2629-2638.	5.4	12
262	Modelling of porosity and waterfronts in cellulosic pellets for understanding drug release behavior. International Journal of Pharmaceutics, 2010, 388, 101-106.	5. 2	12
263	Molecularly Imprinted Hydrogels for Affinity-controlled and Stimuli-responsive Drug Delivery. RSC Smart Materials, 2013, , 228-260.	0.1	12
264	Binding Affinity of Thermoresponsive Polyelectrolyte Hydrogels for Charged Amphiphilic Ligands. A DSC Approach. Langmuir, 2014, 30, 4165-4171.	3. 5	12
265	Temperature―and pHâ€sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drugâ€eluting insertable devices. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
266	Spermidine Cross-Linked Hydrogels as a Controlled Release Biomimetic Approach for Cloxacillin. Molecular Pharmaceutics, 2014, 11, 2358-2371.	4.6	12
267	Polymeric prodrugâ; functionalized polypropylene films for sustained release of salicylic acid. International Journal of Pharmaceutics, 2016, 511, 579-585.	5.2	12
268	Microparticle-embedded fibroin/alginate beads for prolonged local release of simvastatin hydroxyacid to mesenchymal stem cells. Carbohydrate Polymers, 2017, 175, 645-653.	10.2	12
269	Controlled Release Camptothecin Tablets based on Pluronic and Poly(acrylic acid) Copolymer. Effect of Fabrication Technique on Drug Stability, Tablet Structure, and Release Mode. Drug Development and Industrial Pharmacy, 2007, 33, 607-615.	2.0	11
270	Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiation Physics and Chemistry, 2016, 126, 1-8.	2.8	11

#	Article	IF	CITATIONS
271	Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Radiation Physics and Chemistry, 2017, 132, 1-7.	2.8	11
272	Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells. Materials Science and Engineering C, 2021, 128, 112307.	7.3	11
273	Effect of compression force on biopharmaceutical characteristics of Eudragit RS-based cephalexin tablets. International Journal of Pharmaceutics, 1988, 47, 37-42.	5.2	10
274	Relationseips Between Drug Dissolution Profile and Gelling Agent Viscosity in Tablets Prepared with Hydroxypropylmethylcellulose (HPMC) and Sodium Carboxymethylcellulose (NaCMC) Mixtures. Drug Development and Industrial Pharmacy, 1995, 21, 1859-1874.	2.0	10
275	A Comparison of Cellactose with Two ad hoc Processed Lactose-Cellulose Blends as Direct Compression Excipients Chemical and Pharmaceutical Bulletin, 2000, 48, 458-463.	1.3	10
276	Microcalorimetric evidence and rheological consequences of the salt effect on carbopol-surfactant interactions., 2003,, 95-102.		10
277	Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method. Radiation Physics and Chemistry, 2012, 81, 27-32.	2.8	10
278	Temperature-responsiveness and biocompatibility of DEGMA/OEGMA radiation-grafted onto PP and LDPE films. Radiation Physics and Chemistry, 2014, 99, 53-61.	2.8	10
279	Osteogenic poly(ϵ-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. International Journal of Pharmaceutics, 2015, 479, 11-22.	5.2	10
280	Grafting of <i>N</i> àâ€vinyl caprolactam and methacrylic acid onto silicone rubber films for drugâ€eluting products. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
281	Sustainable Electro-Responsive Semi-Interpenetrating Starch/Ionic Liquid Copolymer Networks for the Controlled Sorption/Release of Biomolecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 10516-10532.	6.7	10
282	Effect of Aging on the Bioavailability of Nitrdfurantoin Tablets Containing Carbopol 934. Drug Development and Industrial Pharmacy, 1987, 13, 1315-1327.	2.0	9
283	Ocular penetration and pharmacokinetics of cefotaxime: an experimental study. Current Eye Research, 1988, 7, 1149-1154.	1.5	9
284	Effects of Interactions between Cellulose Ethers and Polysorbate 80 on the Stability of Pyrantel Pamoate Suspensions Chemical and Pharmaceutical Bulletin, 1998, 46, 1421-1427.	1.3	9
285	Degradation of hydroxypropylcellulose by Rhizomucor: effects on release from theophylline–hydroxypropylcellulose tablets. International Journal of Pharmaceutics, 1999, 180, 105-111.	5.2	9
286	Dicalcium phosphate dihydrate for direct compression: Characterization and intermanufacturer variability. International Journal of Pharmaceutics, 1994, 109, 1-8.	5.2	8
287	Comparison of a spray-dried \hat{l}_{\pm} -lactose monohydrate with a fully hydrated roller-dried \hat{l}^2 -lactose. International Journal of Pharmaceutics, 1996, 136, 13-21.	5.2	8
288	Immobilization of liposomes on temperature-responsive polymer networks cross-linked with poly-L-lysine and grafted onto polypropylene. Designed Monomers and Polymers, 2013, 16, 241-249.	1.6	8

#	Article	IF	Citations
289	Patent Survey on Current Applications of Supercritical Fluid Technology in Regenerative Medicine. Recent Patents on Nanomedicine, 2015, 5, 48-58.	0.5	8
290	Carbamazepine bilayer tablets combining hydrophilic and hydrophobic cyclodextrins as a quick/slow biphasic release system. Journal of Drug Delivery Science and Technology, 2020, 57, 101611.	3.0	8
291	CHAPTER 24. Drug/Medical Device Combination Products with Stimuli-responsive Eluting Surface. RSC Smart Materials, 2013, , 313-348.	0.1	8
292	hGH release from directly compressed hGH-PLGA biodegradable implantable tablets: Influence of physicomechanical factors. European Polymer Journal, 2009, 45, 2830-2838.	5.4	7
293	Effects of hydroxymethylpropylcellulose (HPMC) moisture content on hydrochlorothiazide release from HPMC-based tablets. International Journal of Pharmaceutics, 1996, 135, 147-149.	5.2	6
294	Moxifloxacin imprinted silicon based hydrogels for sustained ocular release. Annals of Medicine, 2024, 51, 103-103.	3.8	6
295	Diabetic eye: associated diseases, drugs in clinic, and role of self-assembled carriers in topical treatment. Expert Opinion on Drug Delivery, 2021, 18, 1589-1607.	5.0	6
296	A Comparison of Drug Loading Capacity of Cellactose with Two ad hoc Processed Lactose-Cellulose Direct Compression Excipients. Chemical and Pharmaceutical Bulletin, 2004, 52, 398-401.	1.3	5
297	Dissolution Rate and Bioavailability of Spironolactone Tablets: Effect of Various Technological Factors. Drug Development and Industrial Pharmacy, 1987, 13, 2301-2314.	2.0	4
298	Effects of hydration on the properties of a roller-dried \hat{l}^2 -lactose for direct compression. International Journal of Pharmaceutics, 1996, 129, 253-261.	5.2	4
299	Effects of Storage Humidity on the Mechanical, Microstructural, and Drug Release Properties of Hydroxypropylmethylcellulose-Based Hydrophilic Matrix Tablets. Drug Development and Industrial Pharmacy, 1997, 23, 403-406.	2.0	4
300	Sertaconazole-HPβCD-pluronic F127 solid inclusion complexes: characterization and effect on drug solubility. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 497-501.	1.6	4
301	Modification of indwelling PVC catheters by ionizing radiation with temperature- and pH-responsive polymers for antibiotic delivery. Radiation Physics and Chemistry, 2022, 193, 110005.	2.8	4
302	Stimuli-Sensitive Nanostructured Systems for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 309-348.	0.1	3
303	SEM-image textural features and drug release behavior of Eudragit-based matrix pellets. Journal of Drug Delivery Science and Technology, 2017, 42, 292-298.	3.0	3
304	Syringeable Self-Organizing Gels that Trigger Gold Nanoparticle Formation for Localized Thermal Ablation. Pharmaceutics, 2019, 11, 52.	4.5	3
305	Modular Biomimetic Drug Delivery Systems. , 2013, , 85-122.		3
306	Aging of nitrofurantoin tablets containing Carbopol 934 as a binder. International Journal of Pharmaceutics, 1986, 30, 229-236.	5.2	2

#	Article	IF	CITATIONS
307	Limitations of the MANOVA of statistical moments in bioequivalence trials of drugs with slow elimination rate: A study with spironolactone. Biopharmaceutics and Drug Disposition, 1986, 7, 253-264.	1.9	2
308	Development of Tablets for Controlled Joint Release of Nifedipine and Atenolol. Drug Development and Industrial Pharmacy, 1998, 24, 835-840.	2.0	2
309	Poly(vinyl alcohol) triggers Au nanoparticles formation for nearâ€infrared radiationâ€responsive gels and nanofibers. Journal of Applied Polymer Science, 2020, 137, 48811.	2.6	2
310	Nifedipine/atenolol interactions in gastrointestinal absorption and biotransformation. Die Pharmazie, 1997, 52, 717-20.	0.5	2
311	Poly(pseudo)rotaxanes formed by mixed micelles and \hat{l} ±-cyclodextrin enhance terbinafine nail permeation to deeper layers. International Journal of Pharmaceutics: X, 2022, 4, 100118.	1.6	2
312	Polyethylene Oxide-Polystyrene Oxide Triblock Copolymers as Biological-Responsive Nanocarriers Materials Research Society Symposia Proceedings, 2012, 1468, 7.	0.1	1
313	SCF-assisted processing of dexamethasone-loaded poly(ε-caprolactone)/MCM-41 materials for biomedical applications., 2012,,.		1
314	Chapter 4.3. Ocular Drug Delivery from Nanostructured Contact Lenses. RSC Drug Discovery Series, 2012, , 205-236.	0.3	1
315	Polymers in Drug Delivery: Fundamentals. , 2015, , 319-339.		1
316	Application of Pelletized Sodium Borohydride in the Spectrophotometric Determination of Arsenic. Journal of Analytical Toxicology, 1982, 6, 314-316.	2.8	O
317	Imprinting Using Smart Polymers. , 2007, , 211-245.		O
318	Smart Polymers: Imprinting. , 0, , 7396-7414.		0
319	Modular Biomimetic Drug Delivery Systems. , 0, , 4786-4814.		O
320	Smart Polymers: Imprinting. , 2017, , 1424-1442.		0
321	Sistema de administraci \tilde{A}^3 n e eficacia dos medicamentos: discurso inaugural lido na solemne apertura do curso acad \tilde{A} ©mico 2018-2019. , 0, , .		0
322	Synthesis and Characterization of a Novel Nanomicellar System Pluronic-PEI Suitable for Gene and Drug Co-Delivery in Cancer Therapy. Proceedings (mdpi), 2021, 78, 36.	0.2	0