LucÃ-lia S Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7423274/publications.pdf Version: 2024-02-01

LUCÃI A S RIBEIRO

#	Article	IF	CITATIONS
1	Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry, 2015, 17, 2973-2980.	4.6	90
2	Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Applied Catalysis B: Environmental, 2017, 217, 265-274.	10.8	82
3	Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Applied Catalysis B: Environmental, 2019, 256, 117826.	10.8	61
4	Pd, Pt, and Pt–Cu Catalysts Supported on Carbon Nanotube (CNT) for the Selective Oxidation of Glycerol in Alkaline and Base-Free Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 8548-8556.	1.8	46
5	Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today, 2017, 279, 244-251.	2.2	41
6	Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catalysis Today, 2018, 301, 65-71.	2.2	39
7	Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts. Bioresource Technology, 2018, 263, 402-409.	4.8	39
8	Direct catalytic production of sorbitol from waste cellulosic materials. Bioresource Technology, 2017, 232, 152-158.	4.8	34
9	Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 2013, 48, 5085-5092.	1.7	32
10	Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru–W bimetallic catalysts. Cellulose, 2018, 25, 2259-2272.	2.4	31
11	From sorption-enhanced reactor to sorption-enhanced membrane reactor: A step towards H2 production optimization through glycerol steam reforming. Chemical Engineering Journal, 2019, 368, 795-811.	6.6	28
12	A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob) Tj ETQq0 0 0 rgB1	/Qverlock	210 Tf 50 30
13	Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regeneration. International Journal of Hydrogen Energy, 2019, 44, 2461-2473.	3.8	26
14	Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol. Cellulose, 2019, 26, 7337-7353.	2.4	24
15	Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production. Bioresource Technology, 2017, 244, 1173-1177.	4.8	20
16	Influence of the Surface Chemistry of Multiwalled Carbon Nanotubes on the Selective Conversion of Cellulose into Sorbitol. ChemCatChem, 2017, 9, 888-896.	1.8	19
17	Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts. Industrial Crops and Products, 2021, 166, 113461.	2.5	19

18Screening of catalysts and reaction conditions for the direct conversion of corncob xylan to xylitol.1.31313

LucÃlia S Ribeiro

#	Article	IF	CITATIONS
19	Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles. Catalysis Science and Technology, 2021, 11, 5962-5972.	2.1	12
20	An overview of the hydrolytic hydrogenation of lignocellulosic biomass using carbon-supported metal catalysts. Materials Today Sustainability, 2021, 11-12, 100058.	1.9	8
21	Comparative study of different catalysts for the direct conversion of cellulose to sorbitol. Green Processing and Synthesis, 2015, 4, .	1.3	6
22	Spontaneous gold decoration of activated carbons. Inorganica Chimica Acta, 2013, 408, 235-239.	1.2	4