List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/742315/publications.pdf Version: 2024-02-01

ANDREAS LIDKE

#	Article	IF	CITATIONS
1	<i>In situ</i> reactive extraction with oleic acid for process intensification in amine transaminase catalyzed reactions. Green Chemistry, 2022, 24, 295-304.	9.0	9
2	Yeast-based production and in situ purification of acetaldehyde. Bioprocess and Biosystems Engineering, 2022, 45, 761-769.	3.4	3
3	Model-Based Simultaneous Solvent Screening and Column Design Based on a Holistic Consideration of Extraction and Solvent Recovery. Industrial & Engineering Chemistry Research, 2022, 61, 3374-3382.	3.7	5
4	Enzymatic Cascade in a Simultaneous, One-Pot Approach with <i>In Situ</i> Product Separation for the Asymmetric Production of (4 <i>S</i> ,5 <i>S</i>)-Octanediol. Organic Process Research and Development, 2022, 26, 2038-2045.	2.7	9
5	Electrochemical membrane-assisted pH-swing extraction and back-extraction of lactic acid. Separation and Purification Technology, 2022, 289, 120702.	7.9	8
6	Extracorporeal Hyperoxygenation Therapy (EHT) for Carbon Monoxide Poisoning: In-Vitro Proof of Principle. Membranes, 2022, 12, 56.	3.0	3
7	Toward the Sustainable Production of the Active Pharmaceutical Ingredient Metaraminol. ACS Sustainable Chemistry and Engineering, 2022, 10, 5117-5128.	6.7	8
8	Investigation of the elution behavior of dissociating itaconic acid on a hydrophobic polymeric adsorbent using in-line Raman spectroscopy. Journal of Chromatography A, 2022, 1675, 463140.	3.7	3
9	Comparison of the impact of anion and cation selection onto cation exchange chromatography of model proteins. Journal of Chromatography A, 2022, 1673, 463054.	3.7	2
10	Porous organic frameworks for preferable adsorption of trans-1,2-diols over cis-1,2-diols. Applied Materials Today, 2022, 28, 101523.	4.3	1
11	Automated measurement of pH-dependent solid-liquid equilibria of itaconic acid and protocatechuic acid. Fluid Phase Equilibria, 2021, 532, 112893.	2.5	8
12	Droplet Size Distributions of Liquid‣iquid Dispersions in Centrifugal Pumps. Chemie-Ingenieur-Technik, 2021, 93, 129-142.	0.8	8
13	Extractive <i>in situ</i> product removal for the application of naturally produced <scp>l</scp> -alanine as an amine donor in enzymatic metaraminol production. Green Chemistry, 2021, 23, 4892-4901.	9.0	12
14	Selective lignin fractionation using CO ₂ -expanded 2-methyltetrahydrofuran (2-MTHF). Green Chemistry, 2021, 23, 6330-6336.	9.0	6
15	Molcular Weight Distribution in Di Metal Cyanide Catalyzed Polymerization 1: Fundamental Distribution for Length Dependent Propagation Constant and Segments. Macromolecular Theory and Simulations, 2021, 30, 2100012.	1.4	5
16	Electrochemical pH-T-Swing Separation of Itaconic Acid for Zero Salt Waste Downstream Processing. ACS Sustainable Chemistry and Engineering, 2021, 9, 9336-9347.	6.7	16
17	Metabolic and process engineering for microbial production of protocatechuate with <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2021, 118, 4414-4427.	3.3	10
18	Molecular Weight Distribution in Di Metal Cyanide Catalyzed Polymerization 2: Numerical Simulation of Chain Activation/Deactivation and Diffusion Effects. Macromolecular Theory and Simulations, 2021, 30, 2100013.	1.4	6

#	Article	IF	CITATIONS
19	Prediction of Flooding in Packed Liquidâ€Liquid andÂHighâ€Pressure Extraction Columns Using aÂGaussian Process. Chemie-Ingenieur-Technik, 2021, 93, 1907-1916.	0.8	4
20	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	5.5	33
21	Determination of the Metastable Zone Width and Nucleation Parameters of Succinic Acid for Electrochemically Induced Crystallization. Crystals, 2021, 11, 1090.	2.2	8
22	Reactive extraction for the recovery of primary amines from aqueous streams. Separation and Purification Technology, 2021, 277, 118229.	7.9	13
23	Modelâ€based equipment design for the biphasic production of 5â€hydroxymethylfurfural in a tubular reactor. AICHE Journal, 2020, 66, e16849.	3.6	12
24	Model-based selection of the degree of cross-linking of cation exchanger resins for an optimised separation of monosaccharides. Journal of Chromatography A, 2020, 1610, 460565.	3.7	3
25	Ternary System CO ₂ /2-MTHF/Water—Experimental Study and Thermodynamic Modeling. Journal of Chemical & Engineering Data, 2020, 65, 993-1004.	1.9	5
26	Microgels for the Intensification of Liquidâ€Liquid Extraction Processes – Feasibility and Advantages. Chemical Engineering and Technology, 2020, 43, 137-142.	1.5	5
27	Recovery of succinic acid by integrated multi-phase electrochemical pH-shift extraction and crystallization. Separation and Purification Technology, 2020, 240, 116489.	7.9	40
28	Compartment Model for Liquid-Liquid Extraction Columns. Solvent Extraction and Ion Exchange, 2020, 38, 66-87.	2.0	11
29	Process development for separation of lignin from OrganoCat lignocellulose fractionation using antisolvent precipitation. Separation and Purification Technology, 2020, 236, 116295.	7.9	17
30	Dynamic Modeling of Electrochemical pHâ€&wing Extraction. Chemie-Ingenieur-Technik, 2020, 92, 1953-1961.	0.8	1
31	Prediction and Characterization of Flooding in Pulsed Sieve Plate Extraction Columns Using Data-Driven Models. Industrial & Engineering Chemistry Research, 2020, 59, 19726-19735.	3.7	10
32	Defined Microbial Mixed Culture for Utilization of Polyurethane Monomers. ACS Sustainable Chemistry and Engineering, 2020, 8, 17466-17474.	6.7	60
33	Lignin Precipitation and Fractionation from OrganoCat Pulping to Obtain Lignin with Different Sizes and Chemical Composition. Molecules, 2020, 25, 3330.	3.8	5
34	Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2020, 8, 976.	4.1	56
35	Influence of Reaction Conditions on the Settling Behavior of Liquidâ€Liquid Dispersions. Chemie-Ingenieur-Technik, 2020, 92, 1501-1507.	0.8	0
36	Selection of a recyclable <i>in situ</i> liquid–liquid extraction solvent for foam-free synthesis of rhamnolipids in a two-phase fermentation. Green Chemistry, 2020, 22, 8495-8510.	9.0	25

#	Article	IF	CITATIONS
37	Development, evaluation, and optimisation of downstream process concepts for rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids. Separation and Purification Technology, 2020, 250, 117031.	7.9	14
38	Inline Measurement of the Residence Time Distribution in Highâ€Pressure Extraction Columns. Chemical Engineering and Technology, 2020, 43, 1659-1666.	1.5	0
39	Recent Advances in Experimental Techniques forÂFlow and Mass Transfer Analyses in Thermal Separation Systems. Chemie-Ingenieur-Technik, 2020, 92, 926-948.	0.8	22
40	Towards a holistic solvent screening: On the importance of fluid dynamics in a rate-based extraction model. Chemical Engineering Science, 2020, 227, 115905.	3.8	9
41	Compartmentâ€model for the simulation of the separation performance of stirred liquid–liquidâ€extraction columns. AICHE Journal, 2020, 66, e16286.	3.6	6
42	Two-Dimensional CFD based compartment modeling for dynamic simulation of semi-batch crystallization processes in stirred tank reactors. Computers and Chemical Engineering, 2020, 140, 106933.	3.8	11
43	Electrochemical Crystallization Concept for Succinic Acid Reduces Waste Salt Production. Chemie-Ingenieur-Technik, 2020, 92, 221-228.	0.8	14
44	Solvent accessibility limitation by plant matrix compounds in extraction of rutin from <i>Solanum lycopersicum</i> . Separation Science Plus, 2020, 3, 63-71.	0.6	0
45	Aerated extraction columns for <i>in situ</i> separation of bioâ€based diamines from cell suspensions. Journal of Chemical Technology and Biotechnology, 2019, 94, 426-434.	3.2	4
46	Performance Map for the Design of Liquid‣iquid Extraction Columns. Chemie-Ingenieur-Technik, 2019, 91, 1674-1680.	0.8	13
47	Modeling the fluid dynamics of a high-pressure extraction column. Journal of Supercritical Fluids, 2019, 154, 104636.	3.2	3
48	CFD based compartment-model for a multiphase loop-reactor. Chemical Engineering Science: X, 2019, 2, 100010.	1.5	5
49	Automation of a Procedure for the Experimental Investigation of Liquid‣iquid Phase Separation. Chemie-Ingenieur-Technik, 2019, 91, 1787-1793.	0.8	3
50	Design of Extractive Reaction Systems. Chemie-Ingenieur-Technik, 2019, 91, 1766-1776.	0.8	3
51	Tomato's Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin. ACS Omega, 2019, 4, 19071-19080.	3.5	38
52	Methylformate from CO2: an integrated process combining catalytic hydrogenation and reactive distillation. Green Chemistry, 2019, 21, 6307-6317.	9.0	20
53	Computer tomographic detection of the liquid–liquid mixing and separation within the Annular Centrifugal Contactor/Extractor. Chemical Engineering Research and Design, 2019, 142, 143-153.	5.6	17
54	Integrated in-situ product removal process concept for itaconic acid by reactive extraction, pH-shift back extraction and purification by pH-shift crystallization. Separation and Purification Technology, 2019, 215, 463-472.	7.9	30

#	Article	IF	CITATIONS
55	In situ reactive extraction of itaconic acid during fermentation of Aspergillus terreus. Biochemical Engineering Journal, 2018, 135, 133-141.	3.6	41
56	Fluid Dynamics of Microgel-Covered Drops Reveal Impact on Interfacial Conditions. Polymers, 2018, 10, 809.	4.5	17
57	From beech wood to itaconic acid: case study on biorefinery process integration. Biotechnology for Biofuels, 2018, 11, 279.	6.2	52
58	Four Atom Efficient Enzyme Cascades for All 4-Methoxyphenyl-1,2-propanediol Isomers Including Product Crystallization Targeting High Product Concentrations and Excellent E-Factors. ACS Sustainable Chemistry and Engineering, 2018, 6, 11819-11826.	6.7	22
59	Carbon2Polymer – Conceptual Design of a CO ₂ â€Based Process for the Production of Isocyanates. Chemie-Ingenieur-Technik, 2018, 90, 1497-1503.	0.8	14
60	Development of a CFD model for the simulation of a novel multiphase counter-current loop reactor. Chemical Engineering Science, 2017, 161, 350-359.	3.8	4
61	Liquid–liquid centrifugal separation — New equipment for optical (photographic) evaluation at laboratory scale. Chemical Engineering Research and Design, 2017, 127, 170-179.	5.6	10
62	Liquid-liquid equilibrium of 2-methyltetrahydrofuran/water over wide temperature range: Measurements and rigorous regression. Fluid Phase Equilibria, 2017, 433, 212-225.	2.5	24
63	Liquid/liquid extraction of biomass-derived lignin from lignocellulosic pretreatments. Green Chemistry, 2017, 19, 93-97.	9.0	29
64	Online monitoring of transient L/L phase separation using locally resolved impedance measurements. Chemical Engineering Research and Design, 2016, 115, 251-259.	5.6	0
65	Optimal design of batch and simulated moving bed chromatographic separation processes. Journal of Chromatography A, 2002, 944, 93-117.	3.7	87
66	Effect of the homogeneity of the column set on the performance of a simulated moving bed unit. Journal of Chromatography A, 2002, 944, 3-22.	3.7	38
67	Model-based control of batch chromatography. AICHE Journal, 2001, 47, 2493-2502.	3.6	29
68	Optimaler Betrieb von SMB-Chromatographieprozessen. Chemie-Ingenieur-Technik, 2000, 72, 589-593.	0.8	3
69	Experimentell verifizierte Prozess modelle als Grundlage zur Synthese chromatographischer Prozesse. Chemie-Ingenieur-Technik, 2000, 72, 593-598.	0.8	3
70	Evaluation of ePC-SAFT for pH Calculation in Aqueous Itaconic Acid Solutions at High Ionic Strengths. Journal of Solution Chemistry, 0, , 1.	1.2	0