ÃdÃ;m Tajti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422941/publications.pdf

Version: 2024-02-01

30	333	11	17
papers	citations	h-index	g-index
31	31	31	308
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of isoindolinone phosphonates and their related derivatives by multicomponent reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 599-600.	1.6	1
2	Biginelli reaction of \hat{l}^2 -ketophosphonates, aromatic or aliphatic aldehydes and urea derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 597-598.	1.6	3
3	PMDTA-catalyzed multicomponent synthesis and biological activity of 2-amino-4 <i>H</i> -chromenes containing a phosphonate or phosphine oxide moiety. Organic and Biomolecular Chemistry, 2021, 19, 6883-6891.	2.8	11
4	Three-component synthesis, utilization and biological activity of phosphinoyl-functionalized isoindolinones. Organic and Biomolecular Chemistry, 2021, 19, 8754-8760.	2.8	6
5	Microwave-assisted synthesis of benzo[b]phosphole oxide derivatives by oxidative addition of acetylenes and secondary phosphine oxides or alkyl phenyl-H-phosphinates. Tetrahedron, 2021, 102, 132527.	1.9	4
6	Synthesis of 3,4-Dihydropyrimidin-2(1H)-one-phosphonates by the Microwave-Assisted Biginelli Reaction. Catalysts, 2021, 11, 45.	3.5	8
7	Study on the Microwave-Assisted Batch and Continuous Flow Synthesis of N-Alkyl-Isoindolin-1-One-3-Phosphonates by a Special Kabachnik–Fields Condensation. Molecules, 2020, 25, 3307.	3.8	13
8	Microwave-assisted synthesis of \hat{l}_{\pm} -aminophosphonates with sterically demanding \hat{l}_{\pm} -aryl substituents. Synthetic Communications, 2020, 50, 1446-1455.	2.1	8
9	Microwave-Assisted Multicomponent Syntheses of Heterocyclic Phosphonates. Chemistry Proceedings, 2020, 3, .	0.1	1
10	Microwave-Assisted Kabachnik–Fields Reaction with Amino Alcohols as the Amine Component. Molecules, 2019, 24, 1640.	3.8	11
11	Synthesis of phosphonates in a continuous flow manner. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 285-286.	1.6	3
12	Microwave-assisted synthesis of \hat{l}_{\pm} -aminophosphonates and related derivatives by the Kabachnik-Fields reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 379-381.	1.6	5
13	Application of the Microwave Technique in Continuous Flow Processing of Organophosphorus Chemical Reactions. Materials, 2019, 12, 788.	2.9	23
14	Continuous flow synthesis of î±-aryl-î±-aminophosphonates. Pure and Applied Chemistry, 2019, 91, 67-76.	1.9	11
15	Synthesis of platinum, palladium and rhodium complexes of \hat{l}_{\pm} -aminophosphine ligands. Dalton Transactions, 2018, 47, 4755-4778.	3.3	26
16	Esterification of benzoic acid in a continuous flow microwave reactor. Journal of Flow Chemistry, 2018, 8, 11-19.	1.9	12
17	3. The importance of organophosphorus compounds as biologically active agents. , 2018, , 53-65.		11
18	Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules, 2018, 23, 1618.	3.8	15

#	Article	IF	Citations
19	6. Synthesis of α-aminophosphonates by the Kabachnikâ \in "Fields reaction and by the Pudovik reaction. , 2018, , 108-147.		8
20	Microwave-assisted alcoholysis of dialkyl <i>H</i> -phosphonates by diols and amino alcohols. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 769-775.	1.6	3
21	NMR and symmetry in bisphosphonates R ¹ Resup>1Resup>2N-CH[P(O)(OMe) ₂] ₂ . Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 643-650.	1.6	0
22	Synthesis and utilization of optically active \hat{l}_{\pm} -aminophosphonate derivatives by Kabachnik-Fields reaction. Tetrahedron, 2017, 73, 5659-5667.	1.9	24
23	The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 76-86.	2.2	36
24	Synthesis of Ethyl Octyl α-Aminophosphonate Derivatives. Current Organic Synthesis, 2016, 13, 638-645.	1.3	20
25	Microwave-assisted synthesis of (aminomethylene)bisphosphine oxides and (aminomethylene)bisphosphonates by a three-component condensation. Beilstein Journal of Organic Chemistry, 2016, 12, 1493-1502.	2.2	21
26	Synthesis and utilization of \hat{l}_{\pm} -aminophosphine oxides and related derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1539-1540.	1.6	1
27	Formation of compounds with P–C–N moiety by microwave-assisted condensations. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1541-1542.	1.6	3
28	Microwave-assisted alcoholysis of dialkyl phosphites by ethylene glycol and ethanolamine. Pure and Applied Chemistry, 2014, 86, 1723-1728.	1.9	12
29	Microwave-Assisted Synthesis of Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 48-50.	1.6	10
30	Alcoholysis of Dialkyl Phosphites Under Microwave Conditions. Current Organic Chemistry, 2013, 17, 555-562.	1.6	23