Philip A Isenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422893/publications.pdf

Version: 2024-02-01

50 1,890 23 44
papers citations h-index g-index

53 53 53 879 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction. Journal of Geophysical Research, 2002, 107, SSH 12-1.	3.3	300
2	A hemispherical model of anisotropic interstellar pickup ions. Journal of Geophysical Research, 1997, 102, 4719-4724.	3.3	157
3	Turbulent Heating of the Solar Wind by Newborn Interstellar Pickup Protons. Astrophysical Journal, 2006, 638, 508-517.	4.5	144
4	Turbulent Heating of the Distant Solar Wind by Interstellar Pickup Protons. Astrophysical Journal, 2003, 592, 564-573.	4.5	104
5	Turbulenceâ€driven Solar Wind Heating and Energization of Pickup Protons in the Outer Heliosphere. Astrophysical Journal, 2005, 623, 502-510.	4.5	95
6	The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 1. Outward propagating waves. Journal of Geophysical Research, 2001, 106, 5649-5660.	3.3	78
7	The ion cyclotron dispersion relation in a protonâ€alpha solar wind. Journal of Geophysical Research, 1984, 89, 2133-2141.	3.3	62
8	A dispersive analysis of bispherical pickup ion distributions. Journal of Geophysical Research, 1996, 101, 11055-11066.	3.3	62
9	TURBULENT HEATING OF THE DISTANT SOLAR WIND BY INTERSTELLAR PICKUP PROTONS IN A DECELERATING FLOW. Astrophysical Journal, 2010, 719, 716-721.	4.5	57
10	SPATIAL CONFINEMENT OF THE <i>IBEX </i> RIBBON: A DOMINANT TURBULENCE MECHANISM. Astrophysical Journal, 2014, 787, 76.	4.5	56
11	Preferential Perpendicular Heating of Coronal Hole Minor Ions by the Fermi Mechanism. Astrophysical Journal, 2007, 668, 546-556.	4.5	51
12	Heating of Coronal Holes and Generation of the Solar Wind by Ion-Cyclotron Resonance. Space Science Reviews, 2001, 95, 119-131.	8.1	46
13	The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 3. The proton halo and dispersive waves. Journal of Geophysical Research, 2004, 109, .	3.3	41
14	PREFERENTIAL ACCELERATION AND PERPENDICULAR HEATING OF MINOR IONS IN A COLLISIONLESS CORONAL HOLE. Astrophysical Journal, 2009, 696, 591-600.	4.5	36
15	A KINETIC MODEL OF SOLAR WIND GENERATION BY OBLIQUE ION-CYCLOTRON WAVES. Astrophysical Journal, 2011, 731, 88.	4.5	34
16	<i>ULYSSES</i> OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS. I. NEW OBSERVATIONS AND LINEAR ANALYSIS. Astrophysical Journal, 2014, 784, 150.	4.5	34
17	EXCITATION OF LOW-FREQUENCY WAVES IN THE SOLAR WIND BY NEWBORN INTERSTELLAR PICKUP IONS H ⁺ AS SEEN BY VOYAGER AT 4.5 AU. Astrophysical Journal, 2010, 724, 1256-1261.	4. 5	33
18	<i>ULYSSES</i> OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS. II. APPLICATION OF TURBULENCE CONCEPTS TO LIMITING WAVE ENERGY AND OBSERVABILITY. Astrophysical Journal, 2014, 787, 133.	4.5	33

#	Article	IF	CITATIONS
19	VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au. Astrophysical Journal, 2016, 822, 94.	4. 5	29
20	SELF-CONSISTENT ION CYCLOTRON ANISOTROPY-BETA RELATION FOR SOLAR WIND PROTONS. Astrophysical Journal, 2013, 773, 164.	4. 5	28
21	DRAPING OF THE INTERSTELLAR MAGNETIC FIELD OVER THE HELIOPAUSE: A PASSIVE FIELD MODEL. Astrophysical Journal, 2015, 805, 153.	4.5	27
22	A weaker solar wind termination shock. Geophysical Research Letters, 1997, 24, 623-626.	4.0	25
23	OBSERVATION OF BERNSTEIN WAVES EXCITED BY NEWBORN INTERSTELLAR PICKUP IONS IN THE SOLAR WIND. Astrophysical Journal, 2012, 745, 112.	4.5	25
24	A self-consistent marginally stable state for parallel ion cyclotron waves. Physics of Plasmas, 2012, 19,	1.9	24
25	A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He ⁺ OBSERVED BY THE ACE SPACECRAFT AT 1 au. Astrophysical Journal, 2016, 830, 47.	4.5	22
26	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. II. Instability and Turbulence Analyses. Astrophysical Journal, 2018, 863, 76.	4.5	22
27	Solar Wind Turbulence from 1 to 45 au. IV. Turbulent Transport and Heating of the Solar Wind Using Voyager Observations. Astrophysical Journal, 2020, 900, 94.	4.5	22
28	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. l. Wave Properties. Astrophysical Journal, 2018, 863, 75.	4.5	21
29	Solar Wind Turbulence from 1 to 45 au. III. Anisotropy of Magnetic Fluctuations in the Inertial Range Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 93.	4.5	20
30	Perpendicular Ion Heating by Cyclotron Resonant Dissipation of Turbulently Generated Kinetic Alfvén Waves in the Solar Wind. Astrophysical Journal, 2019, 887, 63.	4.5	18
31	Solar Wind Turbulence from 1 to 45 au. I. Evidence for Dissipation of Magnetic Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 91.	4.5	18
32	ACE observations of magnetic waves arising from newborn interstellar pickup helium ions. Geophysical Research Letters, 2015, 42, 9617-9623.	4.0	16
33	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the <i>Voyager</i> Spacecraft from 1 to 45 au. III. Observation Times. Astrophysical Journal, Supplement Series, 2018, 237, 34.	7.7	16
34	Electron-impact ionization of interstellar hydrogen and helium at interplanetary shocks. Geophysical Research Letters, 1995, 22, 873-875.	4.0	15
35	Observational study of the cooling behavior of interstellar helium pickup ions in the inner heliosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3946-3953.	2.4	15
36	Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au. Astrophysical Journal, 2017, 849, 61.	4.5	15

#	Article	IF	CITATIONS
37	Solar Wind Turbulence from 1 to 45 au. II. Analysis of Inertial-range Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 92.	4.5	14
38	Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons. Astrophysical Journal, 2017, 840, 13.	4.5	13
39	Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data. Journal of Physics: Conference Series, 2017, 900, 012018.	0.4	13
40	Quasilinear Consequences of Turbulent Ion Heating by Magnetic Moment Breaking. Astrophysical Journal, 2019, 870, 119.	4.5	8
41	Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons. AIP Conference Proceedings, 1996, , .	0.4	7
42	Proton Perpendicular Heating in Turbulence Simulations: Determination of the Velocity Diffusion Coefficient. Astrophysical Journal, 2020, 893, 71.	4.5	6
43	KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS. Astrophysical Journal, 2015, 808, 119.	4.5	5
44	Heating the Outer Heliosphere by Pickup Protons. AIP Conference Proceedings, 2004, , .	0.4	4
45	High-latitude Observations of Inertial-range Turbulence by the Ulysses Spacecraft During the Solar Minimum of 1993–96. Astrophysical Journal, 2022, 927, 43.	4.5	4
46	Low-frequency Waves due to Newborn Interstellar Pickup He ⁺ Observed by the Ulysses Spacecraft. Astrophysical Journal, 2021, 923, 185.	4.5	4
47	Solar Wind Turbulence from 1 to 45 au. V. Data Intervals from the Voyager Observations. Astrophysical Journal, Supplement Series, 2020, 250, 14.	7.7	2
48	A Kinetic Model of Acceleration and Heating of Coronal Hole Minor Ions. AIP Conference Proceedings, 2008, , .	0.4	0
49	Energy Diffusion of Pickup Ions Upstream of Comets. Special Publications, 2013, , 8795-8799.	0.0	0
50	An empirically-based model of the upstream heliopause and outer heliosheath - Current status. Journal of Physics: Conference Series, 2019, 1332, 012008.	0.4	0