
David A Sallman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422397/publications.pdf Version: 2024-02-01

ΠΛΝΙΠΑ SALLMAN

#	Article	IF	CITATIONS
1	Eprenetapopt (APR-246) and Azacitidine in <i>TP53</i> -Mutant Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 1584-1594.	0.8	278
2	The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood, 2016, 128, 2960-2975.	0.6	271
3	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	3.3	195
4	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	0.6	195
5	The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood, 2019, 133, 1039-1048.	0.6	172
6	Eprenetapopt Plus Azacitidine in <i>TP53</i> -Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). Journal of Clinical Oncology, 2021, 39, 1575-1583.	0.8	169
7	The First-in-Class Anti-CD47 Antibody Magrolimab (5F9) in Combination with Azacitidine Is Effective in MDS and AML Patients: Ongoing Phase 1b Results. Blood, 2019, 134, 569-569.	0.6	161
8	<i>TP53</i> mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood, 2020, 136, 2812-2823.	0.6	113
9	Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Annals of Hematology, 2018, 97, 435-441.	0.8	95
10	Personalized Prediction Model to Risk Stratify Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 3737-3746.	0.8	90
11	Somatic Mutations in MDS Patients Are Associated with Clinical Features and Predict Prognosis Independent of the IPSS-R: Analysis of Combined Datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood, 2015, 126, 907-907.	0.6	85
12	Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Advances, 2020, 4, 2866-2870.	2.5	81
13	Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Phenotype. Frontiers in Oncology, 2016, 6, 151.	1.3	79
14	NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. Haematologica, 2018, 103, e424-e426.	1.7	66
15	S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes. Leukemia, 2019, 33, 2034-2046.	3.3	66
16	Current status and new treatment approaches in TP53 mutated AML. Best Practice and Research in Clinical Haematology, 2019, 32, 134-144.	0.7	63
17	APR-246 Combined with Azacitidine (AZA) in TP53 Mutated Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). a Phase 2 Study By the Groupe Francophone Des Myélodysplasies (GFM). Blood, 2019, 134, 677-677.	0.6	62
18	Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for <i>TP53</i> -Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. Journal of Clinical Oncology, 2022, 40, 3985-3993.	0.8	62

DAVID A SALLMAN

#	Article	IF	CITATIONS
19	Phase 2 Results of APR-246 and Azacitidine (AZA) in Patients with TP53 mutant Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia (AML). Blood, 2019, 134, 676-676.	0.6	59
20	The role of p53 in myelodysplastic syndromes and acute myeloid leukemia: molecular aspects and clinical implications. Leukemia and Lymphoma, 2017, 58, 1777-1790.	0.6	52
21	Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica, 2016, 101, e320-e323.	1.7	49
22	Phase 1b/2 Combination Study of APR-246 and Azacitidine (AZA) in Patients with TP53 mutant Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3091-3091.	0.6	46
23	Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study. Lancet Haematology,the, 2018, 5, e393-e402.	2.2	44
24	Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes. Blood Advances, 2021, 5, 1017-1028.	2.5	41
25	Prognosis of patients with intermediate risk IPSSâ€R myelodysplastic syndrome indicates variable outcomes and need for models beyond IPSSâ€R. American Journal of Hematology, 2018, 93, 1245-1253.	2.0	34
26	Lenalidomide: Myelodysplastic syndromes with del(5q) and beyond. Seminars in Hematology, 2017, 54, 159-166.	1.8	32
27	Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. European Journal of Haematology, 2019, 102, 203-209.	1.1	28
28	To target the untargetable: elucidation of synergy of APR-246 and azacitidine in <i>TP53</i> mutant myelodysplastic syndromes and acute myeloid leukemia. Haematologica, 2020, 105, 1470-1472.	1.7	28
29	Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Leukemia, 2021, 35, 1145-1155.	3.3	27
30	PP2A: The Achilles Heal in MDS with 5q Deletion. Frontiers in Oncology, 2014, 4, 264.	1.3	24
31	Validation of International Working Group response criteria in higherâ€risk myelodysplastic syndromes: A report on behalf of the MDS Clinical Research Consortium. Cancer Medicine, 2021, 10, 447-453.	1.3	24
32	Phase 1/1b Study of the Stapled Peptide ALRN-6924, a Dual Inhibitor of MDMX and MDM2, As Monotherapy or in Combination with Cytarabine for the Treatment of Relapsed/Refractory AML and Advanced MDS with TP53 Wild-Type. Blood, 2018, 132, 4066-4066.	0.6	24
33	A phase 2 trial of the oral smoothened inhibitor glasdegib in refractory myelodysplastic syndromes (MDS). Leukemia Research, 2019, 81, 56-61.	0.4	20
34	A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood, 2018, 132, 793-793.	0.6	20
35	ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS. Blood Cancer Journal, 2017, 7, 633.	2.8	19
36	Remissions in Relapse/Refractory Acute Myeloid Leukemia Patients Following Treatment with NKG2D CAR-T Therapy without a Prior Preconditioning Chemotherapy. Blood, 2018, 132, 902-902.	0.6	19

DAVID A SALLMAN

#	Article	IF	CITATIONS
37	TP53 and IDH2 Somatic Mutations Are Associated With Inferior Overall Survival After Allogeneic Hematopoietic Cell Transplantation for Myelodysplastic Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 753-758.	0.2	18
38	The promise of macrophage directed checkpoint inhibitors in myeloid malignancies. Best Practice and Research in Clinical Haematology, 2020, 33, 101221.	0.7	18
39	Interrogation of molecular profiles can help in differentiating between MDS and AML with MDS-related changes. Leukemia and Lymphoma, 2020, 61, 1418-1427.	0.6	16
40	Targeting TP53 Mutations in Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2020, 34, 421-440.	0.9	15
41	Comparison of induction strategies and responses for acute myeloid leukemia patients after resistance to hypomethylating agents for antecedent myeloid malignancy. Leukemia Research, 2020, 93, 106367.	0.4	15
42	Personalized Medicine for TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2021, 22, 10105.	1.8	15
43	<i>TP53</i> and <i>MDM2</i> single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes. Oncotarget, 2015, 6, 34437-34445.	0.8	14
44	The Treatment Landscape of Myelofibrosis Before and After Ruxolitinib Approval. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, e45-e53.	0.2	13
45	Decoding Bone Marrow Fibrosis in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 324-328.	0.2	13
46	PTPN11 mutations are associated with poor outcomes across myeloid malignancies. Leukemia, 2021, 35, 286-288.	3.3	11
47	Clonal Suppression of TP53 Mutant MDS and Oligoblastic AML with Hypomethylating Agent Therapy Improves Overall Survival. Blood, 2018, 132, 1817-1817.	0.6	10
48	TP53 and therapy-related myeloid neoplasms. Best Practice and Research in Clinical Haematology, 2019, 32, 98-103.	0.7	9
49	Retrospective Analysis of the Clinical Use and Benefit of Lenalidomide and Thalidomide in Myelofibrosis. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e956-e960.	0.2	9
50	Impact of TP53 gene Mutation Clearance and Conditioning Intensity on Outcome in MDS or AML Patients Prior to Allogeneic Stem Cell Transplantation. Blood, 2019, 134, 149-149.	0.6	9
51	SOHO State of the Art Update and Next Questions: Biology and Treatment of Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 613-620.	0.2	8
52	Targeting the cluster of differentiation 47/signal-regulatory protein alpha axis in myeloid malignancies. Current Opinion in Hematology, 2022, 29, 44-52.	1.2	8
53	Validation of the international working group proposal for <i>SF3B1</i> mutant myelodysplastic syndromes. Blood, 2021, 138, 989-992.	0.6	7
54	MYC Overexpression is Associated with an Early Disease Progression from MDS to AML. Leukemia Research, 2021, 111, 106733.	0.4	6

David A Sallman

#	Article	IF	CITATIONS
55	SOHO State of the Art and Next Questions: Management of Myelodysplastic Syndromes With Deletion 5q. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 629-635.	0.2	5
56	Evolutionary action score identifies a subset of TP53 mutated myelodysplastic syndrome with favorable prognosis. Blood Cancer Journal, 2021, 11, 52.	2.8	5
57	Evaluating Predictors of Immune-Related Adverse Events and Response to Checkpoint Inhibitors in Myeloid Malignancies. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 421-424.e2.	0.2	5
58	Prognostic Impact of ASXL1 Mutations in MDS and CMML. Blood, 2015, 126, 1673-1673.	0.6	5
59	Marrow ring sideroblasts are highly predictive for TP53 mutation in MDS with excess blasts. Leukemia, 2022, 36, 1189-1192.	3.3	5
60	Therapeutic Outcomes and Prognostic Impact of Gene Mutations Including TP53 and SF3B1 in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e467-e476.	0.2	5
61	What Are the Prospects for Treating TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia?. Cancer Journal (Sudbury, Mass), 2022, 28, 51-61.	1.0	5
62	Myelodysplastic/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T): Mayo-Moffitt collaborative study of 158 patients. Blood Cancer Journal, 2022, 12, 26.	2.8	5
63	Mutation-Driven Therapy in MDS. Current Hematologic Malignancy Reports, 2019, 14, 550-560.	1.2	4
64	The Problem of TP53-Mutant MDS/AML. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, S65-S66.	0.2	4
65	Dual pyroptotic biomarkers predict erythroid response in lower-risk non-del(5q) myelodysplastic syndromes treated with lenalidomide and recombinant erythropoietin. Haematologica, 2022, 107, 737-739.	1.7	4
66	NLRP3 Inflammosome Polymorphisms Are Enriched in Myelodysplastic Syndrome Patients with Autoimmune Disorders. Blood, 2015, 126, 1659-1659.	0.6	4
67	CPX-351 Yields Similar Response and Survival Outcome in Younger and Older Patients With Secondary Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 774-779.	0.2	4
68	Hypomethylating Agent Therapy in Myelodysplastic Syndromes With Chromosome 3 Abnormalities. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e597-e605.	0.2	3
69	Treatment outcomes for patients with myelodysplastic syndrome/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis. Leukemia and Lymphoma, 2022, 63, 199-204.	0.6	3
70	Mutations Highly Specific for Secondary AML Are Associated with Poor Outcomes in Patients with NPM1-Mutated ELN Favorable Risk AML. Blood, 2021, 138, 686-686.	0.6	3
71	Splicing factor 3B subunit 1 <scp><i>(SF3B1)</i></scp> mutation in the context of <scp>therapyâ€related</scp> myelodysplastic syndromes. British Journal of Haematology, 2022, 198, 713-720.	1.2	3
72	The role of innate immunity in MDS pathogenesis. HemaSphere, 2019, 3, 135-137.	1.2	2

DAVID A SALLMAN

#	Article	IF	CITATIONS
73	P53 Protein Overexpression By Immunohistochemical Staining Is Correlated with TP53 Mutation Burden and Adverse Clinical Outcome in Myelodysplastic Syndromes. Blood, 2015, 126, 4121-4121.	0.6	2
74	Clinical Characteristics and Outcome of Patients with EZH2- Mutant Myelodysplastic Syndromes. Blood, 2021, 138, 1531-1531.	0.6	2
75	Hypomethylating agent and venetoclax in patients with chronic myelomonocytic leukemia: Is the combination indeed better?. American Journal of Hematology, 2022, 97, .	2.0	2
76	Driver mutationâ€specific clinical and genomic correlates differ between primary and secondary myelofibrosis. American Journal of Hematology, 2019, 94, E314-E317.	2.0	1
77	Fluorescence in Situ Hybridization (FISH) Utility for Risk Score Assessment in Patients With MDS With Normal Metaphase Karyotype. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, e52-e56.	0.2	1
78	Biology and Pathophysiology of MDS with del(5q). , 2020, , 43-54.		1
79	TP53 and IDH2 Somatic Mutations Are Associated with Poor Outcomes Following Allogeneic Hematopoietic Cell Transplantation for Myelodysplastic Syndrome. Blood, 2015, 126, 4382-4382.	0.6	1
80	Treatment Free Remission in Patients with Chronic Phase CML: A Single Center Experience. Blood, 2021, 138, 3612-3612.	0.6	1
81	Prognostic scoring systems and risk stratification in myelodysplastic syndrome: focus on integration of molecular profile. Leukemia and Lymphoma, 2021, , 1-11.	0.6	1
82	Expanding the immune armoury against myelodysplastic syndrome. British Journal of Haematology, 2021, 195, 301-303.	1.2	0
83	Targeting p53 in MDS. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S107-S109.	0.2	0
84	Impact of Hypomethylating Agent Therapy in Myelodysplastic Syndromes with Chromosome 3 Abnormalities. Blood, 2015, 126, 1705-1705.	0.6	0
85	A Focus on Phenotype and Genotype: Racial /Ethnic Disparities in Myelodysplastic Syndromes. Blood, 2021, 138, 1985-1985.	0.6	Ο
86	Gender Disparities in Myelodysplastic Syndromes: Phenotype, Genotype, and Outcomes. Blood, 2021, 138, 1984-1984.	0.6	0
87	Clonal Dynamics of <i>IDH1</i> Mutations in Acute Myeloid Leukemia. Blood, 2021, 138, 4469-4469.	0.6	Ο
88	SF3B1 Mutations and Not TP53 Are Associated with Poor Outcomes in Patients with Del(5q) Myelodysplastic Syndromes (MDS). Blood, 2020, 136, 25-26.	0.6	0