Steve Peigneur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422277/publications.pdf

Version: 2024-02-01

147801 214800 3,658 183 31 47 citations h-index g-index papers 195 195 195 3034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2011, 2, 71.	3.5	215
2	Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview. Marine Drugs, 2014, 12, 2970-3004.	4.6	137
3	Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. International Journal of Molecular Sciences, 2020, 21, 5064.	4.1	103
4	A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochemical Pharmacology, 2011, 82, 81-90.	4.4	93
5	A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. FASEB Journal, 2012, 26, 5141-5151.	0.5	72
6	Experimental Conversion of a Defensin into a Neurotoxin: Implications for Origin of Toxic Function. Molecular Biology and Evolution, 2014, 31, 546-559.	8.9	62
7	Crotamine Pharmacology Revisited: Novel Insights Based on the Inhibition of K _V Channels. Molecular Pharmacology, 2012, 82, 90-96.	2.3	59
8	Molecular diversity of the telson and venom components from <i>Pandinus cavimanus</i> (<i>Scorpionidae</i> Latreille 1802): Transcriptome, venomics and function. Proteomics, 2012, 12, 313-328.	2.2	59
9	Molecular Diversity and Functional Evolution of Scorpion Potassium Channel Toxins. Molecular and Cellular Proteomics, 2011, 10, S1-S11.	3.8	56
10	A novel sea anemone peptide that inhibits acid-sensing ion channels. Peptides, 2014, 53, 3-12.	2.4	54
11	Evolutionary Diversification of Mesobuthus α-Scorpion Toxins Affecting Sodium Channels. Molecular and Cellular Proteomics, 2012, 11, M111.012054.	3.8	53
12	MeuTXK \hat{I}^21 , a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 872-883.	2.3	49
13	Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor. Marine Drugs, 2016, 14, 229.	4.6	48
14	The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella. Molecular Biology and Evolution, 2019, 36, 2001-2012.	8.9	48
15	Crystal Structures of a Cysteine-modified Mutant in Loop D of Acetylcholine-binding Protein. Journal of Biological Chemistry, 2011, 286, 4420-4428.	3.4	46
16	Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1. Journal of Biological Chemistry, 2015, 290, 12195-12209.	3.4	44
17	Toxins in Drug Discovery and Pharmacology. Toxins, 2018, 10, 126.	3.4	42
18	Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function. Cellular and Molecular Life Sciences, 2010, 67, 2799-2813.	5.4	39

#	Article	IF	CITATIONS
19	Investigation of the relationship between the structure and function of Ts2, a neurotoxin from <i>Tityusâ€∫ serrulatus</i> venom. FEBS Journal, 2012, 279, 1495-1504.	4.7	38
20	Electrophysiological Characterization of Ts6 and Ts7, K+ Channel Toxins Isolated through an Improved Tityus serrulatus Venom Purification Procedure. Toxins, 2014, 6, 892-913.	3 . 4	38
21	The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels. Toxins, 2016, 8, 110.	3.4	38
22	Phoneutria nigriventer venom: A pharmacological treasure. Toxicon, 2018, 151, 96-110.	1.6	38
23	PnPP-19, a Synthetic and Nontoxic Peptide Designed from a <i>Phoneutria nigriventer</i> Potentiates Erectile Function via NO/cGMP. Journal of Urology, 2015, 194, 1481-1490.	0.4	37
24	Importance of position 8 in μ onotoxin KIIIA for voltageâ€gated sodium channel selectivity. FEBS Journal, 2011, 278, 3408-3418.	4.7	36
25	Bcs <scp>T</scp> x3 is a founder of a novel sea anemone toxin family of potassium channel blocker. FEBS Journal, 2013, 280, 4839-4852.	4.7	35
26	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
27	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	3.4	35
28	Identification, structural and pharmacological characterization of Ï,,-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor. Biochemical Pharmacology, 2013, 85, 1663-1671.	4.4	34
29	A gamut of undiscovered electrophysiological effects produced by Tityus serrulatus toxin 1 on NaV-type isoforms. Neuropharmacology, $2015, 95, 269-277$.	4.1	34
30	An allosteric binding site of the $\hat{l}\pm7$ nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. Journal of Biological Chemistry, 2018, 293, 2534-2545.	3.4	34
31	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	5.4	34
32	Purification and characterization of Ts15, the first member of a new \hat{l}_{\pm} -KTX subfamily from the venom of the Brazilian scorpion Tityus serrulatus. Toxicon, 2011, 58, 54-61.	1.6	33
33	Structural Similarity between Defense Peptide from Wheat and Scorpion Neurotoxin Permits Rational Functional Design. Journal of Biological Chemistry, 2014, 289, 14331-14340.	3.4	33
34	Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7154-7159.	7.1	33
35	A potent potassium channel blocker from Mesobuthus eupeus scorpion venom. Biochimie, 2010, 92, 1847-1853.	2.6	32
36	The new kappa-KTx 2.5 from the scorpion Opisthacanthus cayaporum. Peptides, 2011, 32, 1509-1517.	2.4	32

#	Article	IF	Citations
37	Biochemical and Electrophysiological Characterization of Two Sea Anemone Type 1 Potassium Toxins from a Geographically Distant Population of Bunodosoma caissarum. Marine Drugs, 2013 , 11 , 655 - 679 .	4.6	32
38	APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1. Marine Drugs, 2017, 15, 287.	4.6	32
39	Modular Organization of α-Toxins from Scorpion Venom Mirrors Domain Structure of Their Targets, Sodium Channels. Journal of Biological Chemistry, 2013, 288, 19014-19027.	3.4	31
40	The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Scientific Reports, 2016, 6, 32121.	3. 3	31
41	Design of Bioactive Peptides from Naturally Occurring \hat{l} 4-Conotoxin Structures. Journal of Biological Chemistry, 2012, 287, 31382-31392.	3.4	30
42	Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6696-E6703.	7.1	30
43	Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels. Scientific Reports, 2016, 6, 33314.	3.3	28
44	An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides, 2008, 29, 1901-1908.	2.4	27
45	Subtype specificity interaction of bactridines with mammalian, insect and bacterial sodium channels under voltage clamp conditions. FEBS Journal, 2012, 279, 4025-4038.	4.7	26
46	Cardiac channelopathy causing sudden death as revealed by molecular autopsy. International Journal of Legal Medicine, 2013, 127, 145-151.	2.2	26
47	Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie, 2015, 115, 8-16.	2.6	26
48	Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins, 2016, 8, 288.	3.4	26
49	Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides. Molecular Biology and Evolution, 2016, 33, 1907-1920.	8.9	26
50	Discovery of a new subclass of α-conotoxins in the venom of Conus australis. Toxicon, 2014, 91, 145-154.	1.6	25
51	A common "hot spot―confers hERG blockade activity to α-scorpion toxins affecting K+ channels. Biochemical Pharmacology, 2008, 76, 805-815.	4.4	24
52	Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie, 2016, 121, 326-335.	2.6	24
53	Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides, 2016, 80, 9-17.	2.4	24
54	Inhibitory effect of the recombinant Phoneutria nigriventer Tx1 toxin on voltage-gated sodium channels. Biochimie, 2012, 94, 2756-2763.	2.6	23

#	Article	IF	Citations
55	The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. Journal of Proteomics, 2013, 87, 89-102.	2.4	23
56	Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic―Toxin from Tityus serrulatus Venom. Toxins, 2015, 7, 2534-2550.	3.4	23
57	Where cone snails and spiders meet: design of small cyclic sodiumâ€channel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.5	23
58	Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Scientific Reports, 2020, 10, 4476.	3.3	23
59	Discovery of K _V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Medicinal Research Reviews, 2021, 41, 2423-2473.	10.5	23
60	Atypical Reactive Center Kunitz-Type Inhibitor from the Sea Anemone Heteractis crispa. Marine Drugs, 2012, 10, 1545-1565.	4.6	22
61	Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon, 2013, 61, 72-82.	1.6	22
62	Two recombinant \hat{l}_{\pm} -like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na+ channels. Biochimie, 2013, 95, 1732-1740.	2.6	22
63	Serrumab: A novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities. Journal of Immunotoxicology, 2014, 11, 133-140.	1.7	22
64	Ts8 scorpion toxin inhibits the Kv4.2 channel and produces nociception inÂvivo. Toxicon, 2016, 119, 244-252.	1.6	22
65	Peptide ion channel toxins from the bootlace worm, the longest animal on Earth. Scientific Reports, 2018, 8, 4596.	3.3	22
66	Caterpillar Venom: A Health Hazard of the 21st Century. Biomedicines, 2020, 8, 143.	3.2	22
67	Structure-Function Elucidation of a New î±-Conotoxin, Lo1a, from Conus longurionis. Journal of Biological Chemistry, 2014, 289, 9573-9583.	3.4	21
68	Panusin represents a new family of \hat{l}^2 -defensin-like peptides in invertebrates. Developmental and Comparative Immunology, 2017, 67, 310-321.	2.3	21
69	Drosotoxin, a selective inhibitor of tetrodotoxin-resistant sodium channels. Biochemical Pharmacology, 2010, 80, 1296-1302.	4.4	20
70	Structure, folding and stability of a minimal homologue from Anemonia sulcata of the sea anemone potassium channel blocker ShK. Peptides, 2018, 99, 169-178.	2.4	20
71	KV1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology, 2018, 143, 228-238.	4.1	20
72	Molecular divergence of two orthologous scorpion toxins affecting potassium channels. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 313-321.	1.8	19

#	Article	IF	Citations
73	Immunosuppressive evidence of <i>Tityus serrulatus</i> toxins Ts6 and Ts15: insights of a novel K ⁺ channel pattern in T cells. Immunology, 2016, 147, 240-250.	4.4	19
74	Synthesis, folding, structure and activity of a predicted peptide from the sea anemone Oulactis sp. with an ShKT fold. Toxicon, 2018, 150, 50-59.	1.6	19
75	Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Medicinal Research Reviews, 2022, 42, 183-226.	10.5	19
76	Structure of Membrane-active Toxin from Crab Spider Heriaeus melloteei Suggests Parallel Evolution of Sodium Channel Gating Modifiers in Araneomorphae and Mygalomorphae. Journal of Biological Chemistry, 2015, 290, 492-504.	3.4	18
77	Astemizole analogues with reduced hERG inhibition as potent antimalarial compounds. Bioorganic and Medicinal Chemistry, 2017, 25, 6332-6344.	3.0	17
78	Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel KV10.1. PLoS ONE, 2017, 12, e0188811.	2.5	17
79	A Centipede Toxin Family Defines an Ancient Class of $CS\hat{l}\pm\hat{l}^2$ Defensins. Structure, 2019, 27, 315-326.e7.	3.3	17
80	Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines, 2020, 8, 473.	3.2	17
81	Î-Conotoxins Synthesized Using an Acid-cleavable Solubility Tag Approach Reveal Key Structural Determinants for NaV Subtype Selectivity. Journal of Biological Chemistry, 2014, 289, 35341-35350.	3.4	16
82	Expanding the pharmacological profile of \hat{i}^{o} -hefutoxin 1 and analogues: A focus on the inhibitory effect on the oncogenic channel Kv10.1. Peptides, 2017, 98, 43-50.	2.4	16
83	Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na+/Ca2+ exchangers. Toxicon, 2014, 82, 61-75.	1.6	15
84	Identification, chemical synthesis, structure, and function of a new K _V 1 channel blocking peptide from <i>Oulactis</i> sp Peptide Science, 2018, 110, e24073.	1.8	15
85	Magnificamide, a Î ² -Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Marine Drugs, 2019, 17, 542.	4.6	15
86	A new multigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Scientific Reports, 2020, 10, 4205.	3.3	15
87	A â€~conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile—The pharmacological importance of post-translational modifications. Peptides, 2013, 49, 145-158.	2.4	14
88	Synthesis and characterization of amino acid deletion analogs of \hat{l}^2 -hefutoxin 1, a scorpion toxin on potassium channels. Toxicon, 2013, 71, 25-30.	1.6	14
89	The Peptide PnPP-19, a Spider Toxin Derivative, Activates $\hat{l}\frac{1}{4}$ -Opioid Receptors and Modulates Calcium Channels. Toxins, 2018, 10, 43.	3.4	14
90	A New Iq-Peptide of the Kunitz Type from the Heteractis magnifica Sea Anemone Exhibits Neuroprotective Activity in a Model of Alzheimer's Disease. Russian Journal of Bioorganic Chemistry, 2018, 44, 416-423.	1.0	14

#	Article	IF	CITATIONS
91	How a Scorpion Toxin Selectively Captures a Prey Sodium Channel: The Molecular and Evolutionary Basis Uncovered. Molecular Biology and Evolution, 2020, 37, 3149-3164.	8.9	14
92	New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa. Toxins, 2020, 12, 44.	3.4	14
93	Small cyclic sodium channel inhibitors. Biochemical Pharmacology, 2021, 183, 114291.	4.4	14
94	Pc16a, the first characterized peptide from Conus pictus venom, shows a novel disulfide connectivity. Peptides, 2012, 34, 106-113.	2.4	13
95	Ligand- and Structure-Based Virtual Screening for Clathrodin-Derived Human Voltage-Gated Sodium Channel Modulators. Journal of Chemical Information and Modeling, 2013, 53, 3223-3232.	5 . 4	13
96	Venomous Secretions from Marine Snails of the Terebridae Family Target Acetylcholine Receptors. Toxins, 2013, 5, 1043-1050.	3.4	13
97	Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators. European Journal of Medicinal Chemistry, 2014, 74, 23-30.	5 . 5	13
98	Trancriptomic approach reveals the molecular diversity of Hottentotta conspersus (Buthidae) venom. Toxicon, 2015, 99, 73-79.	1.6	13
99	Novel Conopeptides of Largely Unexplored Indo Pacific Conus sp Marine Drugs, 2016, 14, 199.	4.6	13
100	Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides, 2016, 82, 44-51.	2.4	13
101	First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes. International Journal of Biological Macromolecules, 2019, 140, 556-567.	7.5	13
102	A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. Journal of Medicinal Chemistry, 2020, 63, 8250-8264.	6.4	13
103	Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model. Biomedicines, 2021, 9, 283.	3.2	13
104	Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. Toxicon, 2014, 83, 75-83.	1.6	12
105	Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. European Journal of Medicinal Chemistry, 2017, 139, 232-241.	5. 5	12
106	Electrophysiological characterization of Tityus obscurus \hat{l}^2 toxin 1 (To1) on Na+-channel isoforms. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 142-150.	2.6	12
107	Structure-Function Elucidation of a New $\hat{l}\pm$ -Conotoxin, MillA, from Conus milneedwardsi. Marine Drugs, 2019, 17, 535.	4.6	12
108	Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon, 2018, 148, 74-84.	1.6	11

#	Article	IF	CITATIONS
109	Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon, 2019, 168, 104-112.	1.6	11
110	Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins, 2020, 12, 250.	3.4	11
111	AbeTx1 Is a Novel Sea Anemone Toxin with a Dual Mechanism of Action on Shaker-Type K+ Channels Activation. Marine Drugs, 2018, 16, 360.	4.6	10
112	Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. Journal of Biological Chemistry, 2019, 294, 18349-18359.	3.4	10
113	Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 662227.	3.7	10
114	TRPV1 Channel as New Target for Marine Toxins: Example of Gigantoxin I, a Sea Anemone Toxin Acting Via Modulation of the PLA2 Pathway. Acta Chimica Slovenica, 2011, 58, 735-41.	0.6	10
115	Action of Clathrodin and Analogues on Voltage-Gated Sodium Channels. Marine Drugs, 2014, 12, 2132-2143.	4.6	9
116	AaHIV a sodium channel scorpion toxin inhibits the proliferation of DU145 prostate cancer cells. Biochemical and Biophysical Research Communications, 2020, 521, 340-346.	2.1	9
117	Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. International Journal of Biological Macromolecules, 2021, 190, 564-573.	7. 5	9
118	Identification, Synthesis, Conformation and Activity of an Insulin-like Peptide from a Sea Anemone. Biomolecules, 2021, 11, 1785.	4.0	9
119	Unraveling the peptidome of the South African cone snails Conus pictus and Conus natalis. Peptides, 2013, 41, 8-16.	2.4	8
120	C-Terminal residues in small potassium channel blockers OdK1 and OSK3 from scorpion venom fine-tune the selectivity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 465-472.	2.3	8
121	Tuning Scorpion Toxin Selectivity: Switching From KV1.1 to KV1.3. Frontiers in Pharmacology, 2020, 11, 1010.	3.5	8
122	Design and characterization of a novel structural class of $Kv1.3$ inhibitors. Bioorganic Chemistry, 2020, 98, 103746.	4.1	8
123	Adaptively evolved human oral actinomycesâ€sourced defensins show therapeutic potential. EMBO Molecular Medicine, 2022, 14, e14499.	6.9	8
124	Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS ONE, 2015, 10, e0137611.	2.5	7
125	Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel \hat{l} ±-KTx subfamily. Peptides, 2016, 80, 4-8.	2.4	7
126	Phoneutria nigriventer Spider Toxin PnTx2-1 ($\hat{\Gamma}$ -Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating. Toxins, 2018, 10, 337.	3.4	7

#	Article	IF	CITATIONS
127	PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer. Toxins, 2018, 10, 72.	3.4	7
128	Antinociceptive effects of new pyrazoles compounds mediated by the ASIC-1 \hat{l} ± channel, TRPV-1 and \hat{l} 4MOR receptors. Biomedicine and Pharmacotherapy, 2019, 115, 108915.	5.6	7
129	Pioneering Study on Rhopalurus crassicauda Scorpion Venom: Isolation and Characterization of the Major Toxin and Hyaluronidase. Frontiers in Immunology, 2020, 11, 2011.	4.8	7
130	New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins, 2021, 13, 29.	3.4	7
131	Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology, 2021, 454, 152737.	4.2	7
132	In Silico and In Vitro Structure–Activity Relationship of Mastoparan and Its Analogs. Molecules, 2022, 27, 561.	3.8	7
133	Kunitz-Type Peptides from Sea Anemones Protect Neuronal Cells against Parkinson's Disease Inductors via Inhibition of ROS Production and ATP-Induced P2X7 Receptor Activation. International Journal of Molecular Sciences, 2022, 23, 5115.	4.1	7
134	Two recombinant depressant scorpion neurotoxins differentially affecting mammalian sodium channels. Toxicon, 2010, 55, 1425-1433.	1.6	6
135	Design of sodium channel ligands with defined selectivity – a case study in scorpion alphaâ€ŧoxins. FEBS Letters, 2017, 591, 3414-3420.	2.8	6
136	Jaburetox, a natural insecticide derived from Jack Bean Urease, activates voltage-gated sodium channels to modulate insect behavior. Pesticide Biochemistry and Physiology, 2019, 153, 67-76.	3.6	6
137	3D Pharmacophore-Based Discovery of Novel KV10.1 Inhibitors with Antiproliferative Activity. Cancers, 2021, 13, 1244.	3.7	6
138	AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels. Marine Drugs, 2022, 20, 140.	4.6	6
139	A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels. Marine Drugs, 2022, 20, 147.	4.6	6
140	Refined structure of BeM9 reveals arginine hand, an overlooked structural motif in scorpion toxins affecting sodium channels. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1117-1122.	2.6	5
141	Scorpion toxin MeuNaTxαâ€1 sensitizes primary nociceptors by selective modulation of voltageâ€gated sodium channels. FEBS Journal, 2021, 288, 2418-2435.	4.7	5
142	Review: HCN Channels in the Heart. Current Cardiology Reviews, 2022, 18, .	1.5	5
143	De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules, 2022, 27, 47.	3.8	5
144	Design of New Potent and Selective Thiophene-Based KV1.3 Inhibitors and Their Potential for Anticancer Activity. Cancers, 2022, 14, 2595.	3.7	5

#	Article	IF	CITATIONS
145	Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning. Biochemistry, 2016, 55, 2927-2935.	2.5	4
146	Identification and Characterization of a Peptide from the Stony Coral <i>Heliofungia actiniformis</i> Journal of Natural Products, 2020, 83, 3454-3463.	3.0	4
147	Anti-inflammatory and detoxification activities of some Ipomoea species determined by ion channel inhibition and their phytochemical constituents. ScienceAsia, 2021, 47, 321.	0.5	4
148	Artificial Peptide Ligand of Potassium Channel KV1.1 with High Selectivity. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 386-403.	0.6	4
149	Oleamide in Ipomoea and Dillenia Species and Inflammatory Activity Investigated through Ion Channel Inhibition. Current Pharmaceutical Biotechnology, 2021, 22, 254-261.	1.6	4
150	Functional Characterization of the Nemertide \hat{l}_{\pm} Family of Peptide Toxins. Journal of Natural Products, 2021, 84, 2121-2128.	3.0	4
151	Ala-7, His-10 and Arg-12 are crucial amino acids for activity of a synthetically engineered î¼-conotoxin. Peptides, 2014, 53, 300-306.	2.4	3
152	tâ€boc synthesis of huwentoxinâ€i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy. Biopolymers, 2016, 106, 737-745.	2.4	3
153	Compound Heterozygous SCN5A Mutations in Severe Sodium Channelopathy With Brugada Syndrome: A Case Report. Frontiers in Cardiovascular Medicine, 2020, 7, 117.	2.4	3
154	New insights in the mode of action of (+)-erythravine and (+)- $11\hat{l}_{\pm}$ -hydroxy-erythravine alkaloids. European Journal of Pharmacology, 2020, 885, 173390.	3.5	3
155	WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines, 2021, 9, 484.	3.2	3
156	Potassium channel blocker crafted by α-hairpinin scaffold engineering. Biophysical Journal, 2021, 120, 2471-2481.	0.5	3
157	Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacology and Translational Science, 2021, 4, 1379-1389.	4.9	3
158	Isolation and characterization of FMRFamide-like peptides in the venoms of solitary sphecid wasps. Peptides, 2021, 142, 170575.	2.4	3
159	Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides. Journal of Molecular Medicine, 2022, 100, 65-76.	3.9	3
160	Synthesis and biological evaluation of piperazine derivatives as novel isoform selective voltage-gated sodium (Nav) 1.3 channel modulators. Medicinal Chemistry Research, 2015, 24, 2366-2380.	2.4	2
161	Effects of deletion and insertion of amino acids on the activity of $HelaTx1$, a scorpion toxin on potassium channels. Toxicon, 2016, 111, 1-5.	1.6	2
162	Subtype Specificity of \hat{l}^2 -Toxin Tf1a from Tityus fasciolatus in Voltage Gated Sodium Channels. Toxins, 2018, 10, 339.	3.4	2

#	Article	IF	CITATIONS
163	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	4.4	2
164	Editorial: Venoms and Toxins: At the Crossroads of Basic, Applied and Clinical Immunology. Frontiers in Immunology, 2021, 12, 716508.	4.8	2
165	A Pseudoscorpion's Promising Pinch: The venom of Chelifer cancroides contains a rich source of novel compounds. Toxicon, 2021, 201, 92-104.	1.6	2
166	Solution Structure and Functional Analysis of HelaTx1: The First Toxin Member of the κ-KTx5 Subfamily. BMB Reports, 2020, 53, 260-265.	2.4	2
167	Newly Discovered Peptides from the Coral <i>Heliofungia actiniformis</i> Show Structural and Functional Diversity. Journal of Natural Products, 2022, 85, 1789-1798.	3.0	2
168	Role of individual disulfide bridges in the conformation and activity of spinoxin (\hat{l} ±-KTx6.13), a potassium channel toxin from Heterometrus spinifer scorpion venom. Toxicon, 2016, 122, 31-38.	1.6	1
169	Recombinant Production and Structure–Function Study of the Ts1 Toxin from the Brazilian Scorpion Tityus serrulatus. Doklady Biochemistry and Biophysics, 2019, 484, 9-12.	0.9	1
170	GiTx1(\hat{l}^2/\hat{l}^2 -theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae): Isolation, structural assessments and activity on voltage-gated ion channels. Biochimie, 2020, 176, 138-149.	2.6	1
171	New Sea Anemone Toxin RTX-VI Selectively Modulates Voltage-Gated Sodium Channels. Doklady Biochemistry and Biophysics, 2020, 495, 292-295.	0.9	1
172	Bradykinin induces peripheral antinociception in PGE2-induced hyperalgesia in mice. Biochemical Pharmacology, 2022, 198, 114965.	4.4	1
173	Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. International Journal of Molecular Sciences, 2022, 23, 7714.	4.1	1
174	Cover Image, Volume 86, Issue 10. Proteins: Structure, Function and Bioinformatics, 2018, 86, C4-C4.	2.6	0
175	Pegylating toxins: A new trend in toxinology? A successful example of a PEGylated snake venom serine protease. Toxicon, 2020, 177, S58-S59.	1.6	0
176	Heterologous expression of a neurotoxin from Tityus serrulatus scorpion venom in Pichia pastoris yeast and the evaluation of its glycosylation patterns., 0,,.		0
177	Shedding new lights on the recombinant \hat{l}^2 -KTx neurotoxin from Tityus serrulatus: heterologous expression, structural and functional characterization, 0, , .		O
178	Derivative of Scorpion Neurotoxin BeM9 Is Selective for Insect Voltage-Gated Sodium Channels. Russian Journal of Bioorganic Chemistry, 2021, 47, 854-863.	1.0	0
179	Quinazolinone dimers as a potential new class of safer Kv1 inhibitors: Overcoming hERG, sodium and calcium channel affinities. Bioorganic Chemistry, 2021, 115, 105264.	4.1	0
180	The Mechanism of Action of Microalgal Toxins Interacting with NaV and KV Channels., 2014,, 3-34.		0

#	Article	IF	CITATIONS
181	A Centipede Toxin Family Defines a New Ancient Class of CSSS Defensins. SSRN Electronic Journal, 0, , .	0.4	O
182	New Kv, NAv, and ASIC channel toxins from the sea anemone Heteractis crispa. Toxicon, 2019, 158, S48.	1.6	0
183	Bradykinin Induces Peripheral Antinociception in PGE ₂ -Induced Hyperalgesia in Mice. SSRN Electronic Journal, 0, , .	0.4	0