Wei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422182/publications.pdf

Version: 2024-02-01

		840119	996533
15	2,431	11	15
papers	citations	h-index	g-index
15	15	15	4092
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advanced Asymmetric Supercapacitors Based on Ni(OH) < sub > 2 < / sub > / Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	7.8	1,855
2	Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129, 598-606.	5.4	105
3	Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures. ACS Nano, 2016, 10, 9123-9128.	7.3	96
4	Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. Journal of Materials Chemistry A, 2019, 7, 7138-7150.	5.2	82
5	A facile strategy for fabricating hierarchical nanocomposites of V ₂ O ₅ nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9938-9947.	5.2	74
6	Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material. Carbon, 2018, 132, 667-677.	5.4	68
7	Graphene-templated carbon aerogels combining with ultra-high electrical conductivity and ultra-low thermal conductivity. Microporous and Mesoporous Materials, 2017, 253, 71-79.	2.2	40
8	Epsilonâ€Negative Carbon Aerogels with State Transition from Dielectric to Degenerate Semiconductor. Advanced Electronic Materials, 2021, 7, 2000877.	2.6	25
9	Hot-Melt Adhesive Based on Dynamic Oxime–Carbamate Bonds. Industrial & Engineering Chemistry Research, 2021, 60, 6925-6931.	1.8	21
10	Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Science China Materials, 2022, 65, 2207-2216.	3.5	18
11	Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal. Journal of Sol-Gel Science and Technology, 2016, 80, 68-76.	1.1	14
12	Large interlayer spacing vanadium oxide nanotubes as cathodes for high performance sodium ion batteries. RSC Advances, 2018, 8, 22053-22061.	1.7	11
13	A facile strategy for the synthesis of graphene/V ₂ O ₅ nanospheres and graphene/VN nanospheres derived from a single graphene oxide-wrapped VO _x nanosphere precursor for hybrid supercapacitors. RSC Advances, 2018, 8, 27924-27934.	1.7	9
14	è¡¨é¢æ°§åŒ—构建PPy@VNO/NGæ¸å£³ç»"构作为长寿å′½è¶…级ç"µå®¹å™¨èŸæžææ—™. Science Chin	a Material	s, 2 0 21, 64, 2
15	Synthesis and characterization of various V2O5 microsphere structures and their electrochemical performance. Journal of Alloys and Compounds, 2018, 757, 177-187.	2.8	6