
Jeong Hyun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7422003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics, 2022, 38, 364-368.	4.1	15
2	KR-31831 improves survival and protects hematopoietic cells and radiosensitive tissues against radiation-induced injuries in mice. Biomedicine and Pharmacotherapy, 2022, 146, 112350.	5.6	2
3	CADASIL mutations sensitize the brain to ischemia via spreading depolarizations and abnormal extracellular potassium homeostasis. Journal of Clinical Investigation, 2022, 132, .	8.2	5
4	Identification and New Indication of Melanin-Concentrating Hormone Receptor 1 (MCHR1) Antagonist Derived from Machine Learning and Transcriptome-Based Drug Repositioning Approaches. International Journal of Molecular Sciences, 2022, 23, 3807.	4.1	4
5	ldentification of new target proteins of a Urotensin-II receptor antagonist using transcriptome-based drug repositioning approach. Scientific Reports, 2021, 11, 17138.	3.3	4
6	Optimization of cyclic sulfamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitors for the potential treatment of ischemic brain injury. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126787.	2.2	7
7	DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity. Bioinformatics, 2020, 36, 3049-3055.	4.1	54
8	KR-39038, a Novel GRK5 Inhibitor, Attenuates Cardiac Hypertrophy and Improves Cardiac Function in Heart Failure. Biomolecules and Therapeutics, 2020, 28, 482-489.	2.4	8
9	DITMD-induced mitotic defects and apoptosis in tumor cells by blocking the polo-box domain-dependent functions of polo-like kinase 1. European Journal of Pharmacology, 2019, 847, 113-122.	3.5	2
10	Icariin protects against radiation-induced mortality and damage in vitro and in vivo. International Journal of Radiation Biology, 2019, 95, 1094-1102.	1.8	10
11	A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure. European Journal of Pharmacology, 2017, 799, 94-102.	3.5	19
12	Requisite ischemia for spreading depolarization occurrence after subarachnoid hemorrhage in rodents. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1829-1840.	4.3	24
13	Development of a High-Throughput Assay for Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1 Based on Time-Resolved Fluorescence Energy Transfer. Biological and Pharmaceutical Bulletin, 2017, 40, 1454-1462.	1.4	3
14	Enhancement of contraction and L-type Ca2+ current by murrayafoline-A via protein kinase C in rat ventricular myocytes. European Journal of Pharmacology, 2016, 784, 33-41.	3.5	4
15	A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells. Molecular and Cellular Biochemistry, 2016, 422, 151-160.	3.1	15
16	A urotensin II receptor antagonist, KR36676, decreases vascular remodeling and inflammation in experimental pulmonary hypertension. International Immunopharmacology, 2016, 40, 196-202.	3.8	23
17	A Dual Readout Assay Based on Fluorescence Polarization and Time-Resolved Fluorescence Resonance Energy Transfer to Screen for RSK1 Inhibitors. Biological and Pharmaceutical Bulletin, 2016, 39, 547-555.	1.4	2
18	The orally active urotensin receptor antagonist, <scp>KR</scp> 36676, attenuates cellular and cardiac hypertrophy. British Journal of Pharmacology, 2015, 172, 2618-2633.	5.4	23

JEONG HYUN LEE

#	Article	IF	CITATIONS
19	Migraine Prophylaxis, Ischemic Depolarizations, and Stroke Outcomes in Mice. Stroke, 2015, 46, 229-236.	2.0	38
20	A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay and Drug Development Technologies, 2014, 12, 361-368.	1.2	8
21	Selective <scp>ROCK</scp> 2 inhibition in focal cerebral ischemia. Annals of Clinical and Translational Neurology, 2014, 1, 2-14.	3.7	104
22	4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4080-4083.	2.2	16
23	Design and synthesis of novel 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and -5 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6711-6716.	2.2	17
24	Cardiovascular effects of a novel selective Rho kinase inhibitor, 2-(1H-indazole-5-yl)amino-4-methoxy-6-piperazino triazine (DW1865). European Journal of Pharmacology, 2013, 702, 218-226.	3.5	30
25	Kamolonol suppresses angiotensin II-induced stress fiber formation and cellular hypertrophy through inhibition of Rho-associated kinase 2 activity. Biochemical and Biophysical Research Communications, 2013, 438, 318-323.	2.1	7
26	Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke. PLoS ONE, 2013, 8, e71478.	2.5	73
27	Migraine Mutations Increase Stroke Vulnerability by Facilitating Ischemic Depolarizations. Circulation, 2012, 125, 335-345.	1.6	148
28	Genetic Animal Models of Cerebral Vasculopathies. Progress in Molecular Biology and Translational Science, 2012, 105, 25-55.	1.7	16
29	Gabapentin reduces infarct volume but does not suppress peri-infarct depolarizations. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1578-1582.	4.3	12
30	Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E128-35.	7.1	106
31	Cilostazol enhances neovascularization in the mouse hippocampus after transient forebrain ischemia. Journal of Neuroscience Research, 2010, 88, 2228-2238.	2.9	17
32	Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nature Biotechnology, 2010, 28, 249-255.	17.5	290
33	Cilostazol Ameliorates Metabolic Abnormalities with Suppression of Proinflammatory Markers in a db/db Mouse Model of Type 2 Diabetes via Activation of Peroxisome Proliferator-Activated Receptor γ Transcription. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 571-579.	2.5	38
34	Cilostazol preserves CA1 hippocampus and enhances generation of immature neuroblasts in dentate gyrus after transient forebrain ischemia in rats. Experimental Neurology, 2009, 215, 87-94.	4.1	25
35	Protective Effects of Cilostazol against Transient Focal Cerebral ischemia and Chronic Cerebral Hypoperfusion Injury. CNS Neuroscience and Therapeutics, 2008, 14, 143-152.	3.9	40
36	Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-Î ³ transcription. Atherosclerosis, 2008, 201, 258-265.	0.8	28

JEONG HYUN LEE

#	Article	IF	CITATIONS
37	Synergistic Efficacy of Concurrent Treatment with Cilostazol and Probucol on the Suppression of Reactive Oxygen Species and Inflammatory Markers in Cultured Human Coronary Artery Endothelial Cells. Korean Journal of Physiology and Pharmacology, 2008, 12, 165.	1.2	13
38	Poly(ADP-ribose) polymerase inhibition by cilostazol is implicated in the neuroprotective effect against focal cerebral ischemic infarct in rat. Brain Research, 2007, 1152, 182-190.	2.2	27
39	Beneficial synergistic effects of concurrent treatment with cilostazol and probucol against focal cerebral ischemic injury in rats. Brain Research, 2007, 1157, 112-120.	2.2	27
40	Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunction with increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Research, 2007, 1185, 246-255.	2.2	42
41	Protection from apoptotic cell death by cilostazol, phosphodiesterase type III inhibitor, via cAMP-dependent protein kinase activation. Pharmacological Research, 2006, 54, 261-267.	7.1	36
42	Neuroprotection by cilostazol, a phosphodiesterase type 3 inhibitor, against apoptotic white matter changes in rat after chronic cerebral hypoperfusion. Brain Research, 2006, 1082, 182-191.	2.2	65
43	Cilostazol: Therapeutic Potential Against Focal Cerebral Ischemic Damage. Current Pharmaceutical Design, 2006, 12, 565-573.	1.9	45
44	Cilostazol Suppresses Superoxide Production and Expression of Adhesion Molecules in Human Endothelial Cells via Mediation of cAMP-Dependent Protein Kinase-Mediated Maxi-K Channel Activation. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1238-1245.	2.5	58
45	Cilostazol Prevents Remnant Lipoprotein Particle-Induced Monocyte Adhesion to Endothelial Cells by Suppression of Adhesion Molecules and Monocyte Chemoattractant Protein-1 Expression via Lectin-Like Receptor for Oxidized Low-Density Lipoprotein Receptor Activation. Journal of Pharmacology and Experimental Therapeutics. 2005. 312. 1241-1248.	2.5	83
46	Cilostazol Reduces Atherosclerosis by Inhibition of Superoxide and Tumor Necrosis Factor-α Formation in Low-Density Lipoprotein Receptor-Null Mice Fed High Cholesterol. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 502-509.	2.5	95
47	Lack of antiapoptotic effects of antiplatelet drug, aspirin and clopidogrel, and antioxidant, MCI-186, against focal ischemic brain damage in rats. Neurological Research, 2005, 27, 483-492.	1.3	26
48	Cilostazol Prevents Focal Cerebral Ischemic Injury by Enhancing Casein Kinase 2 Phosphorylation and Suppression of Phosphatase and Tensin Homolog Deleted from Chromosome 10 Phosphorylation in Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 896-903.	2.5	99
49	Remnant Lipoprotein Particles Induce Apoptosis in Endothelial Cells by NAD(P)H Oxidase–Mediated Production of Superoxide and Cytokines via Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Activation. Circulation, 2004, 109, 1022-1028.	1.6	230
50	Cilostazol Enhances Casein Kinase 2 Phosphorylation and Suppresses Tumor Necrosis Factor-α-Induced Increased Phosphatase and Tensin Homolog Deleted from Chromosome 10 Phosphorylation and Apoptotic Cell Death in SK-N-SH Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 97-104.	2.5	27
51	17 <i>Ĵ²</i> â€Estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats. Fundamental and Clinical Pharmacology, 2004, 18, 547-557. Anti-apoptotic action of	1.9	69
52	(2S,3S,4R)-Nâ€3-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-Ná (KR-31378) by suppression of the phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and increased phosphorylation of casein kinase2/Akt/ cyclic AMP response element binding protein via maxi-K channel opening in neuronal cells. European Journal of Pharmacology,	à€²-benzylg 3.5	uanidine 9
53	2004, 497, 267-277. Cilostazol reduces brain lesion induced by focal cerebral ischemia in rats—an MRI study. Brain Research, 2003, 994, 91-98.	2.2	58
54	Role of nitric oxide in the CBF autoregulation during acute stage after subarachnoid haemorrhage in rat pial artery. Fundamental and Clinical Pharmacology, 2003, 17, 563-573.	1.9	11

JEONG HYUN LEE

#	Article	IF	CITATIONS
55	Prevention of Impairment of Cerebral Blood Flow Autoregulation during Acute Stage of Subarachnoid Hemorrhage by Gene Transfer of Cu/Zn SOD-1 to Cerebral Vessels. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 111-120.	4.3	18
56	Cilostazol Prevents Tumor Necrosis Factor-α-Induced Cell Death by Suppression of Phosphatase and Tensin Homolog Deleted from Chromosome 10 Phosphorylation and Activation of Akt/Cyclic AMP Response Element-Binding Protein Phosphorylation. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1182-1190.	2.5	39
57	Prevention of Impairment of Cerebral Blood Flow Autoregulation During Acute Stage of Subarachnoid Hemorrhage by Cene Transfer of Cu/Zn SOD-1 to Cerebral Vessels. Journal of Cerebral Blood Flow and Metabolism, 2003, , 111-120.	4.3	5
	Neuroprotective Effect of (2S,3S,4R)-N"-cyano-N-(6-amino-3,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 632 Td (4-di	ydro-3-hyd	droxy-2-meth
58	Benzopyran Analog, against Focal Ischemic Brain Damage in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 210-216.	2.5	25
59	Neuroprotective Effect of Cilostazol against Focal Cerebral Ischemia via Antiapoptotic Action in Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 787-793.	2.5	134
60	Vascular NAD(P)H Oxidase Triggers Delayed Cerebral Vasospasm After Subarachnoid Hemorrhage in Rats. Stroke, 2002, 33, 2687-2691.	2.0	74
61	Gene transfer of Cu/Zn SOD to cerebral vessels prevents FPI-induced CBF autoregulatory dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1836-H1842.	3.2	16
62	Impairment of Autoregulatory Vasodilation by NAD(P)H Oxidase—Dependent Superoxide Generation during Acute Stage of Subarachnoid Hemorrhage in Rat Pial Artery. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 869-877.	4.3	40