Ulrich Kalinke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421981/publications.pdf

Version: 2024-02-01

200 papers 16,169 citations

19636 61 h-index 19169 118 g-index

207 all docs

207 docs citations

times ranked

207

25323 citing authors

#	Article	IF	CITATIONS
1	IFNα activates dormant haematopoietic stem cells in vivo. Nature, 2009, 458, 904-908.	13.7	1,181
2	Type I interferon is selectively required by dendritic cells for immune rejection of tumors. Journal of Experimental Medicine, 2011, 208, 1989-2003.	4.2	874
3	Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell, 1991, 65, 293-304.	13.5	509
4	A crucial role for B cells in neuroinvasive scrapie. Nature, 1997, 390, 687-690.	13.7	484
5	Regulation of antiviral T cell responses by type I interferons. Nature Reviews Immunology, 2015, 15, 231-242.	10.6	371
6	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	15.2	353
7	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	6.6	352
8	Prevention of Scrapie Pathogenesis by Transgenic Expression of Anti-Prion Protein Antibodies. Science, 2001, 294, 178-182.	6.0	334
9	Cutting Edge: Enhancement of Antibody Responses Through Direct Stimulation of B and T Cells by Type I IFN. Journal of Immunology, 2006, 176, 2074-2078.	0.4	320
10	Phenotypic and Biochemical Analyses of BACE1- and BACE2-deficient Mice. Journal of Biological Chemistry, 2005, 280, 30797-30806.	1.6	309
11	Complement facilitates early prion pathogenesis. Nature Medicine, 2001, 7, 488-492.	15.2	301
12	TRADD Protein Is an Essential Component of the RIG-like Helicase Antiviral Pathway. Immunity, 2008, 28, 651-661.	6.6	280
13	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	15.2	256
14	Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood, 2006, 108, 3253-3261.	0.6	248
15	Direct Stimulation of T Cells by Type I IFN Enhances the CD8+ T Cell Response during Cross-Priming. Journal of Immunology, 2006, 176, 4682-4689.	0.4	248
16	Targeted Disruption of LIGHT Causes Defects in Costimulatory T Cell Activation and Reveals Cooperation with Lymphotoxin \hat{I}^2 in Mesenteric Lymph Node Genesis. Journal of Experimental Medicine, 2002, 195, 1613-1624.	4.2	241
17	Immune Cell–Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation. Cancer Discovery, 2014, 4, 674-687.	7.7	226
18	Virus-induced Interferon α Production by a Dendritic Cell Subset in the Absence of Feedback Signaling In Vivo. Journal of Experimental Medicine, 2002, 195, 507-516.	4.2	225

#	Article	IF	Citations
19	Myeloid Type I Interferon Signaling Promotes Atherosclerosis by Stimulating Macrophage Recruitment to Lesions. Cell Metabolism, 2010, 12, 142-153.	7.2	212
20	Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity, 2014, 40, 961-973.	6.6	199
21	Macrophage-expressed IFN-β Contributes to Apoptotic Alveolar Epithelial Cell Injury in Severe Influenza Virus Pneumonia. PLoS Pathogens, 2013, 9, e1003188.	2.1	195
22	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	2.1	184
23	Type I Interferon Signaling in Dendritic Cells Stimulates the Development of Lymph-Node-Resident T Follicular Helper Cells. Immunity, 2009, 31, 491-501.	6.6	169
24	NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. Journal of Experimental Medicine, 2007, 204, 893-906.	4.2	168
25	cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells. PLoS Pathogens, 2016, 12, e1005546.	2.1	168
26	Protective Role of Beta Interferon in Host Defense against Influenza A Virus. Journal of Virology, 2007, 81, 2025-2030.	1.5	165
27	IL-17–induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. Journal of Experimental Medicine, 2014, 211, 643-651.	4.2	159
28	Cutting Edge: CD8 T Cells Specific for Lymphocytic Choriomeningitis Virus Require Type I IFN Receptor for Clonal Expansion. Journal of Immunology, 2006, 176, 4525-4529.	0.4	151
29	La Crosse Bunyavirus Nonstructural Protein NSs Serves To Suppress the Type I Interferon System of Mammalian Hosts. Journal of Virology, 2007, 81, 4991-4999.	1.5	150
30	Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB Journal, 2010, 24, 788-798.	0.2	148
31	Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment. Immunity, 2016, 44, 901-912.	6.6	143
32	Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell, 2020, 181, 1080-1096.e19.	13.5	139
33	Role of Repetitive Antigen Patterns for Induction of Antibodies Against Antibodies. Journal of Experimental Medicine, 1997, 185, 1785-1792.	4.2	129
34	Local Type I IFN Receptor Signaling Protects against Virus Spread within the Central Nervous System. Journal of Immunology, 2009, 182, 2297-2304.	0.4	128
35	Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II. Journal of Allergy and Clinical Immunology, 2010, 125, 175-183.e11.	1.5	117
36	RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	5.8	114

#	Article	IF	Citations
37	Type I IFN-Mediated Protection of Macrophages and Dendritic Cells Secures Control of Murine Coronavirus Infection. Journal of Immunology, 2009, 182, 1099-1106.	0.4	113
38	A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. Journal of Virology, 2015, 89, 11654-11667.	1.5	108
39	Toward biosimilar monoclonal antibodies. Nature Biotechnology, 2008, 26, 985-990.	9.4	107
40	The Role of Somatic Mutation in the Generation of the Protective Humoral Immune Response against Vesicular Stomatitis Virus. Immunity, 1996, 5, 639-652.	6.6	106
41	Modified Vaccinia Virus Ankara Induces Toll-Like Receptor-Independent Type I Interferon Responses. Journal of Virology, 2007, 81, 12102-12110.	1.5	103
42	Systems Analysis of a RIG-I Agonist Inducing Broad Spectrum Inhibition of Virus Infectivity. PLoS Pathogens, 2013, 9, e1003298.	2.1	96
43	Type I IFN signaling in CD8– DCs impairs Th1-dependent malaria immunity. Journal of Clinical Investigation, 2014, 124, 2483-2496.	3.9	96
44	Characterization of the Interferon-Producing Cell in Mice Infected with Listeria monocytogenes. PLoS Pathogens, 2009, 5, e1000355.	2.1	94
45	Enhancement of IFNÎ ³ Production by Distinct Commensals Ameliorates Salmonella-Induced Disease. Cell Host and Microbe, 2017, 21, 682-694.e5.	5.1	91
46	Differential Responses of Immune Cells to Type I Interferon Contribute to Host Resistance to Viral Infection. Cell Host and Microbe, 2012, 12, 571-584.	5.1	89
47	Type I Interferon Signaling Prevents IL- \hat{I}^2 -Driven Lethal Systemic Hyperinflammation during Invasive Bacterial Infection of Soft Tissue. Cell Host and Microbe, 2016, 19, 375-387.	5.1	88
48	Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration. Gut, 2014, 63, 1921-1931.	6.1	84
49	Type I Interferon Receptor Signaling of Neurons and Astrocytes Regulates Microglia Activation during Viral Encephalitis. Cell Reports, 2018, 25, 118-129.e4.	2.9	84
50	Synergistic and Differential Modulation of Immune Responses by Hsp60 and Lipopolysaccharide. Journal of Biological Chemistry, 2007, 282, 4669-4680.	1.6	80
51	Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-l-dependent manner in mice. Hepatology, 2010, 52, 25-32.	3.6	78
52	Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. Journal of Virology, 2016, 90, 2031-2038.	1.5	77
53	Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain, Behavior, and Immunity, 2018, 74, 186-204.	2.0	77
54	Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines. Journal of Virology, 2014, 88, 7276-7285.	1.5	75

#	Article	IF	Citations
55	Neutralizing antiviral antibody responses. Advances in Immunology, 2001, 79, 1-53.	1.1	74
56	Efficient immune responses in mice lacking N-region diversity. European Journal of Immunology, 1995, 25, 3115-3122.	1.6	70
57	Type I Interferon Protects Mice from Fatal Neurotropic Infection with Langat Virus by Systemic and Local Antiviral Responses. Journal of Virology, 2014, 88, 12202-12212.	1.5	70
58	Signaling Signatures and Functional Properties of Anti-Human CD28 Superagonistic Antibodies. PLoS ONE, 2008, 3, e1708.	1.1	68
59	Interferonâ€beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Molecular Medicine, 2016, 8, 670-678.	3.3	68
60	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	5.2	67
61	Vaccinia Virus-Mediated Inhibition of Type I Interferon Responses Is a Multifactorial Process Involving the Soluble Type I Interferon Receptor B18 and Intracellular Components. Journal of Virology, 2009, 83, 1563-1571.	1.5	66
62	Virally Infected Mouse Liver Endothelial Cells Trigger CD8+ T-Cell Immunity. Gastroenterology, 2010, 138, 336-346.	0.6	65
63	Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis. Journal of Virology, 2015, 89, 2731-2738.	1.5	64
64	Circumventing Tolerance to the Prion Protein (PrP): Vaccination with PrP-Displaying Retrovirus Particles Induces Humoral Immune Responses against the Native Form of Cellular PrP. Journal of Virology, 2005, 79, 4033-4042.	1.5	62
65	The type I interferon response bridles rabies virus infection and reduces pathogenicity. Journal of NeuroVirology, 2011, 17, 353-367.	1.0	62
66	The regulatory landscape for actively personalized cancer immunotherapies. Nature Biotechnology, 2013, 31, 880-882.	9.4	62
67	Mechanisms for Interferon-α-Induced Depression and Neural Stem Cell Dysfunction. Stem Cell Reports, 2014, 3, 73-84.	2.3	61
68	Novel Functions of Tyrosine Kinase 2 in the Antiviral Defense against Murine Cytomegalovirus. Journal of Immunology, 2005, 175, 4000-4008.	0.4	60
69	Cytosolic RIG-l–like helicases act as negative regulators of sterile inflammation in the CNS. Nature Neuroscience, 2012, 15, 98-106.	7.1	60
70	Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nature Communications, 2015, 6, 8991.	5.8	60
71	Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12883-12888.	3.3	59
72	Systemic Virus Infections Differentially Modulate Cell Cycle State and Functionality of Long-Term Hematopoietic Stem Cells InÂVivo. Cell Reports, 2017, 19, 2345-2356.	2.9	58

#	Article	IF	Citations
73	TGN1412—a regulator's perspective. Nature Biotechnology, 2006, 24, 493-496.	9.4	56
74	Effects of Type I Interferons on Friend Retrovirus Infection. Journal of Virology, 2006, 80, 3438-3444.	1.5	56
75	CD28 Superagonists: What Makes the Difference in Humans?. Immunity, 2008, 28, 591-595.	6.6	55
76	Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell–Mediated Protection from ⟨i⟩Listeria Monocytogenes⟨ i⟩ Infection. Journal of Immunology, 2014, 192, 1071-1078.	0.4	54
77	Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLoS Pathogens, 2017, 13, e1006696.	2.1	54
78	Postexposure Immunization with Modified Vaccinia Virus Ankara or Conventional Lister Vaccine Provides Solid Protection in a Murine Model of Human Smallpox. Journal of Infectious Diseases, 2009, 199, 39-48.	1.9	53
79	Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncolmmunology, 2012, 1, 1027-1037.	2.1	53
80	cGAS-STING-TBK1-IRF3/7 induced interferon- \hat{l}^2 contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence, 2017, 8, 1303-1315.	1.8	51
81	A fusion protein of flagellin and ovalbumin suppresses the TH2 response and prevents murine intestinal allergy. Journal of Allergy and Clinical Immunology, 2011, 128, 1340-1348.e12.	1.5	50
82	Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection. PLoS Pathogens, 2012, 8, e1002763.	2.1	49
83	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-l interferon production in plasmacytoid dendritic cells. Journal of Experimental Medicine, 2013, 210, 355-374.	4.2	49
84	IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-α Secretion and LPS-Induced Endotoxin Shock. Journal of Immunology, 2013, 191, 3913-3921.	0.4	48
85	Enhanced Virus Clearance by Early Inducible Lymphocytic Choriomeningitis Virus-Neutralizing Antibodies in Immunoglobulin-Transgenic Mice. Journal of Virology, 1998, 72, 2253-2258.	1.5	48
86	Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8929-E8938.	3.3	47
87	Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. Journal of Immunology, 2014, 193, 2496-2503.	0.4	46
88	A New RNA-Based Adjuvant Enhances Virus-Specific Vaccine Responses by Locally Triggering TLR- and RLH-Dependent Effects. Journal of Immunology, 2017, 198, 1595-1605.	0.4	46
89	Influenza B Virus Ribonucleoprotein Is a Potent Activator of the Antiviral Kinase PKR. PLoS Pathogens, 2009, 5, e1000473.	2.1	45
90	Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiology of Disease, 2018, 110, 192-205.	2.1	44

#	Article	IF	CITATIONS
91	Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. Journal of Hepatology, 2018, 68, 682-690.	1.8	43
92	Type I Interferon Receptor Signaling in Astrocytes Regulates Hippocampal Synaptic Plasticity and Cognitive Function of the Healthy CNS. Cell Reports, 2020, 31, 107666.	2.9	43
93	Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei. PLoS Pathogens, 2010, 6, e1000722.	2.1	42
94	Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17â€mediated autoimmunity in the CNS. Immunology and Cell Biology, 2012, 90, 505-509.	1.0	42
95	Immune protection against reinfection with nonprimate hepacivirus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2430-E2439.	3.3	42
96	Host strategies against virus entry via the olfactory system. Virulence, 2011, 2, 367-370.	1.8	41
97	Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. International Journal of Cancer, 2016, 139, 1350-1357.	2.3	41
98	Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development. Journal of Biological Chemistry, 2007, 282, 37836-37843.	1.6	40
99	Vaccination with A \hat{l}^2 -Displaying Virus-Like Particles Reduces Soluble and Insoluble Cerebral A \hat{l}^2 and Lowers Plaque Burden in APP Transgenic Mice. Journal of Immunology, 2009, 182, 7613-7624.	0.4	40
100	Cell entry, efficient RNA replication, and production of infectious hepatitis C virus progeny in mouse liver-derived cells. Hepatology, 2014, 59, 78-88.	3.6	40
101	The deubiquitinase OTUB1 augments NF-κB-dependent immune responses in dendritic cells in infection and inflammation by stabilizing UBC13. Cellular and Molecular Immunology, 2021, 18, 1512-1527.	4.8	40
102	Excessive CpG 1668 stimulation triggers ILâ€10 production by cDC that inhibits IFNâ€i± responses by pDC. European Journal of Immunology, 2008, 38, 3127-3137.	1.6	39
103	New lessons about old molecules: how type I interferons shape Th1/Th17-mediated autoimmunity in the CNS. Trends in Molecular Medicine, 2010, 16, 379-386.	3.5	39
104	Cell Contact–Dependent Priming and Fc Interaction with CD32+ Immune Cells Contribute to the TGN1412-Triggered Cytokine Response. Journal of Immunology, 2014, 192, 2091-2098.	0.4	39
105	Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. Journal of Hepatology, 2019, 70, 722-734.	1.8	38
106	Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 13-17.	2.0	37
107	Cytomegalovirus immune evasion of myeloid lineage cells. Medical Microbiology and Immunology, 2015, 204, 367-382.	2.6	37
108	STING induces early IFN- \hat{l}^2 in the liver and constrains myeloid cell-mediated dissemination of murine cytomegalovirus. Nature Communications, 2019, 10, 2830.	5.8	37

#	Article	IF	CITATIONS
109	Toward experimental assessment of receptor occupancy: TGN1412 revisited. Journal of Allergy and Clinical Immunology, 2008, 122, 890-892.	1.5	36
110	Interferon Regulatory Factor-1 Protects from Fatal Neurotropic Infection with Vesicular Stomatitis Virus by Specific Inhibition of Viral Replication in Neurons. PLoS Pathogens, 2014, 10, e1003999.	2.1	36
111	Double-stranded RNA-binding protein E3 controls translation of viral intermediate RNA, marking an essential step in the life cycle of modified vaccinia virus Ankara. Journal of General Virology, 2006, 87, 1145-1155.	1.3	35
112	Critical Role of Perforin-dependent CD8+ T Cell Immunity for Rapid Protective Vaccination in a Murine Model for Human Smallpox. PLoS Pathogens, 2012, 8, e1002557.	2.1	35
113	Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus. Journal of Immunology, 2009, 182, 6044-6050.	0.4	34
114	Morbillivirus Control of the Interferon Response: Relevance of STAT2 and mda5 but Not STAT1 for Canine Distemper Virus Virulence in Ferrets. Journal of Virology, 2014, 88, 2941-2950.	1.5	34
115	TGN1412 Induces Lymphopenia and Human Cytokine Release in a Humanized Mouse Model. PLoS ONE, 2016, 11, e0149093.	1.1	34
116	Monovalent single-chain Fv fragments and bivalent miniantibodies bound to vesicular stomatitis virus protect against lethal infection. European Journal of Immunology, 1996, 26, 2801-2806.	1.6	33
117	Short-term, but not post-exposure, protection against lethal orthopoxvirus challenge after immunization with modified vaccinia virus Ankara. Journal of General Virology, 2006, 87, 2917-2921.	1.3	33
118	Vesicular Stomatitis Virus Glycoprotein Displaying Retrovirus-Like Particles Induce a Type I IFN Receptor-Dependent Switch to Neutralizing IgG Antibodies. Journal of Immunology, 2007, 178, 5839-5847.	0.4	33
119	Expression of type I interferon by splenic macrophages suppresses adaptive immunity during sepsis. EMBO Journal, 2012, 31, 201-213.	3.5	33
120	A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry. Journal of Virology, 2017, 91, .	1.5	33
121	Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102073.	1.7	33
122	Beneficial and detrimental functions of microglia during viral encephalitis. Trends in Neurosciences, 2022, 45, 158-170.	4.2	33
123	Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells. Frontiers in Immunology, 2017, 8, 1302.	2.2	32
124	Dendritic Cells Require STAT-1 Phosphorylated at Its Transactivating Domain for the Induction of Peptide-Specific CTL. Journal of Immunology, 2009, 183, 2286-2293.	0.4	31
125	RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade. EBioMedicine, 2019, 41, 146-155.	2.7	31
126	Concomitant type I IFN receptorâ€triggering of T cells and of DC is required to promote maximal modified vaccinia virus Ankaraâ€induced Tâ€cell expansion. European Journal of Immunology, 2010, 40, 2769-2777.	1.6	29

#	Article	IF	Citations
127	Additive Effect of Neutralizing Antibody and Antiviral Drug Treatment in Preventing Virus Escape and Persistence. Journal of Virology, 2000, 74, 5896-5901.	1.5	28
128	Poly(I:C)-Encapsulating Nanoparticles Enhance Innate Immune Responses to the Tuberculosis Vaccine Bacille Calmette–Guérin (BCG) via Synergistic Activation of Innate Immune Receptors. Molecular Pharmaceutics, 2017, 14, 4098-4112.	2.3	28
129	TLR-ligand stimulated interleukin-23 subunit expression and assembly is regulated differentially in murine plasmacytoid and myeloid dendritic cells. Molecular Immunology, 2007, 44, 1483-1489.	1.0	27
130	Combinatorial immunoglobulin light chain variability creates sufficient B cell diversity to mount protective antibody responses against pathogen infections. European Journal of Immunology, 2003, 33, 950-961.	1.6	26
131	Concomitant TLR/RLH Signaling of Radioresistant and Radiosensitive Cells Is Essential for Protection against Vesicular Stomatitis Virus Infection. Journal of Immunology, 2014, 193, 3045-3054.	0.4	26
132	Type I IFN and not TNF, is Essential for Cyclic Di-nucleotide-elicited CTL by a Cytosolic Cross-presentation Pathway. EBioMedicine, 2017, 22, 100-111.	2.7	26
133	Clinical development and approval of COVID-19 vaccines. Expert Review of Vaccines, 2022, 21, 609-619.	2.0	26
134	Manufacturing and Quality Control of Cell-based Tumor Vaccines: A Scientific and a Regulatory Perspective. Journal of Immunotherapy, 2006, 29, 472-476.	1.2	25
135	Matrix protein mediated shutdown of host cell metabolism limits vesicular stomatitis virus-induced interferon-alpha responses to plasmacytoid dendritic cells. Immunobiology, 2008, 212, 887-894.	0.8	25
136	A frequent hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance. Hepatology, 2015, 62, 1375-1387.	3.6	25
137	Impaired IFNÎ ³ -Signaling and Mycobacterial Clearance in IFNÎ ³ R1-Deficient Human iPSC-Derived Macrophages. Stem Cell Reports, 2018, 10, 7-16.	2.3	25
138	Type I Interferon Signaling Is Required for CpG-Oligodesoxynucleotide-Induced Control of Leishmania major, but Not for Spontaneous Cure of Subcutaneous Primary or Secondary L. major Infection. Frontiers in Immunology, 2018, 9, 79.	2.2	25
139	Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-infection Model. Cell Reports, 2020, 33, 108389.	2.9	25
140	Activation of cGAS/STING pathway upon paramyxovirus infection. IScience, 2021, 24, 102519.	1.9	25
141	Secondary Rearrangements and Hypermutation Generate Sufficient B Cell Diversity to Mount Protective Antiviral Immunoglobulin Responses. Journal of Experimental Medicine, 1999, 189, 1791-1798.	4.2	24
142	Impaired Functionality of Antiviral T Cells in G-CSF Mobilized Stem Cell Donors: Implications for the Selection of CTL Donor. PLoS ONE, 2013, 8, e77925.	1.1	24
143	Protection against RNA-induced liver damage by myeloid cells requires type I interferon and IL-1 receptor antagonist in mice. Hepatology, 2014, 59, 1555-1563.	3.6	24
144	M27 Expressed by Cytomegalovirus Counteracts Effective Type I Interferon Induction of Myeloid Cells but Not of Plasmacytoid Dendritic Cells. Journal of Virology, 2014, 88, 13638-13650.	1.5	24

#	Article	IF	CITATIONS
145	Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cellular and Molecular Immunology, 2018, 15, 875-887.	4.8	24
146	Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nature Communications, 2015, 6, 6199.	5.8	23
147	CD4+ T cells in patients with chronic inflammatory rheumatic disorders show distinct levels of exhaustion. Journal of Allergy and Clinical Immunology, 2016, 138, 586-589.e10.	1.5	23
148	Expression of the Human Cytomegalovirus UL11 Glycoprotein in Viral Infection and Evaluation of Its Effect on Virus-Specific CD8 T Cells. Journal of Virology, 2014, 88, 14326-14339.	1.5	22
149	The European Regulatory Environment of RNA-Based Vaccines. Methods in Molecular Biology, 2017, 1499, 203-222.	0.4	22
150	Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice. PLoS Pathogens, 2018, 14, e1007235.	2.1	22
151	Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Frontiers in Immunology, 2018, 9, 333.	2.2	22
152	A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice. Viruses, 2020, 12, 26.	1.5	22
153	CD40 ligand-triggered human dendritic cells mount interleukin-23 responses that are further enhanced by danger signals. Molecular Immunology, 2010, 47, 1255-1261.	1.0	21
154	ICOS-LICOS interaction is critically involved in TGN1412-mediated T-cell activation. Blood, 2012, 119, 6268-6277.	0.6	21
155	Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice. European Journal of Immunology, 2016, 46, 2175-2186.	1.6	21
156	Rapid Expansion of CD8 ⁺ T Cells in Wild-Type and Type I Interferon Receptor-Deficient Mice Correlates with Protection after Low-Dose Emergency Immunization with Modified Vaccinia Virus Ankara. Journal of Virology, 2014, 88, 10946-10957.	1.5	20
157	Absence of cGAS-mediated type I IFN responses in HIV-1–infected T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19475-19486.	3.3	20
158	B cell depletion impairs vaccination-induced CD8 ⁺ T cell responses in a type I interferon-dependent manner. Annals of the Rheumatic Diseases, 2021, 80, 1537-1544.	0.5	20
159	Thogoto Virus Infection Induces Sustained Type I Interferon Responses That Depend on RIG-I-Like Helicase Signaling of Conventional Dendritic Cells. Journal of Virology, 2010, 84, 12344-12350.	1.5	19
160	A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Scientific Reports, 2017, 7, 2933.	1.6	19
161	Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathogens, 2017, 13, e1006346.	2.1	19
162	Hematopoietic stem cell gene therapy for IFN \hat{I}^3 R1 deficiency protects mice from mycobacterial infections. Blood, 2018, 131, 533-545.	0.6	19

#	Article	IF	Citations
163	Ncf1Provides a Reactive Oxygen Species-Independent Negative Feedback Regulation of TLR9-Induced IL-12p70 in Murine Dendritic Cells. Journal of Immunology, 2009, 182, 4183-4191.	0.4	17
164	Mycobacteriaâ€induced granuloma necrosis depends on IRFâ€1. Journal of Cellular and Molecular Medicine, 2009, 13, 2069-2082.	1.6	16
165	Control of Nipah Virus Infection in Mice by the Host Adaptors Mitochondrial Antiviral Signaling Protein (MAVS) and Myeloid Differentiation Primary Response 88 (MyD88). Journal of Infectious Diseases, 2020, 221, S401-S406.	1.9	16
166	Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-Î ³ Responsive Pathway. Cells, 2020, 9, 483.	1.8	16
167	Immunity against prions?. Trends in Molecular Medicine, 2001, 7, 477-479.	3.5	14
168	Non-tolerant B cells cause autoimmunity in anti-CD8 IgG2a-transgenic mice. European Journal of Immunology, 1996, 26, 250-258.	1.6	13
169	Neuroprotective Effects of the Cellular Prion Protein in Autoimmune Optic Neuritis. American Journal of Pathology, 2011, 178, 2823-2831.	1.9	13
170	The antiviral drug ganciclovir does not inhibit microglial proliferation and activation. Scientific Reports, 2015, 5, 14935.	1.6	13
171	Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes. Oncotarget, 2018, 9, 4737-4757.	0.8	13
172	Selective reconstitution of IFNâ€Î³ gene function in Ncr1+ÂNK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathogens, 2020, 16, e1008279.	2.1	13
173	Comparative Analysis of Transduced Primary Human Dendritic Cells Generated by the Use of Three Different Lentiviral Vector Systems. Molecular Biotechnology, 2011, 47, 262-269.	1.3	12
174	Statins inhibit iNOSâ€mediated microbicidal potential of activated monocyteâ€derived dendritic cells by an IFNâ€Î²â€dependent mechanism. European Journal of Immunology, 2011, 41, 3330-3339.	1.6	12
175	N1L Is an Ectromelia Virus Virulence Factor and Essential for <i>In Vivo</i> Spread upon Respiratory Infection. Journal of Virology, 2011, 85, 3557-3569.	1.5	12
176	Myeloid Cells Restrict MCMV and Drive Stress-Induced Extramedullary Hematopoiesis through STAT1. Cell Reports, 2019, 26, 2394-2406.e5.	2.9	12
177	MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Science Immunology, 2021, 6, .	5.6	12
178	Prion protein-specific antibodies for therapeutic intervention of transmissible spongiform encephalopathies. Expert Opinion on Biological Therapy, 2006, 6, 293-300.	1.4	11
179	TLR7 Controls VSV Replication in CD169+ SCS Macrophages and Associated Viral Neuroinvasion. Frontiers in Immunology, 2019, 10, 466.	2.2	11
180	Modulation of TAP-dependent antigen compartmentalization during human monocyte-to-DC differentiation. Blood Advances, 2019, 3, 839-850.	2.5	11

#	Article	IF	Citations
181	Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines. Virulence, 2018, 9, 1669-1684.	1.8	10
182	Mice defective in interferon signaling help distinguish between primary and secondary pathological pathways in a mouse model of neuronal forms of Gaucher disease. Journal of Neuroinflammation, 2020, 17, 265.	3.1	10
183	Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. Journal of Controlled Release, 2021, 334, 201-212.	4.8	10
184	Toll-like Receptors in Viral Encephalitis. Viruses, 2021, 13, 2065.	1.5	10
185	Efficient Virus Assembly, but Not Infectivity, Determines the Magnitude of Hepatitis C Virus-Induced Interferon Alpha Responses of Plasmacytoid Dendritic Cells. Journal of Virology, 2015, 89, 3200-3208.	1.5	9
186	A CpG-rich bidirectional promoter induces the T-cell death-associated gene 51 and downregulates an inversely oriented transcript during early T-cell activation. Gene, 2004, 338, 197-207.	1.0	8
187	cGAMP Quantification in Virus-Infected Human Monocyte-Derived Cells by HPLC-Coupled Tandem Mass Spectrometry. Methods in Molecular Biology, 2017, 1656, 153-166.	0.4	7
188	Regulatory T-Cells Mediate IFN- \hat{l} ±-Induced Resistance against Antigen-Induced Arthritis. Frontiers in Immunology, 2018, 9, 285.	2.2	7
189	Sequential MAVS and MyD88/TRIF signaling triggers antiâ€viral responses of tickâ€borne encephalitis virusâ€infected murine astrocytes. Journal of Neuroscience Research, 2021, 99, 2478-2492.	1.3	6
190	IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Frontiers in Immunology, 2022, 13, 786940.	2.2	6
191	MHV-68 producing mIFN $\hat{1}\pm1$ is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68. Vaccine, 2011, 29, 3935-3944.	1.7	5
192	Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells. Scientific Reports, 2015, 5, 18308.	1.6	4
193	Reply to: "Lack of Kupffer cell depletion in diethylnitrosamine-induced hepatic inflammation― Journal of Hepatology, 2019, 70, 815-816.	1.8	4
194	Hepatitis C Virus Stimulates Murine CD8 \hat{l}_{\pm} -Like Dendritic Cells to Produce Type I Interferon in a TRIF-Dependent Manner. PLoS Pathogens, 2016, 12, e1005736.	2.1	4
195	Selective gene transfer to T lymphocytes using coreceptor-specific [MLV(HIV)] pseudotype vectors in a transgenic mouse model. Virology, 2006, 351, 237-247.	1.1	3
196	Tollâ€like receptors matter: plasmacytoid dendritic cells in COVIDâ€19. EMBO Journal, 2022, 41, e111208.	3.5	3
197	RNA-Based Adjuvants: Immunoenhancing Effect on Antiviral Vaccines and Regulatory Considerations. Critical Reviews in Immunology, 2019, 39, 1-14.	1.0	2
198	Induction of thymic atrophy and loss of thymic output by type-I interferons during chronic viral infection. Virology, 2022, 567, 77-86.	1.1	2

#	Article	lF	CITATIONS
199	Reply to: "Unveiling the depletion of Kupffer cells in experimental hepatocarcinogenesis through liver macrophage subtype-specific markers― Journal of Hepatology, 2019, 71, 633-635.	1.8	1
200	IFNAR signaling in fibroblastic reticular cells can modulate CD8 ⁺ memory fate decision. European Journal of Immunology, 2022, 52, 895-906.	1.6	1