Pablo Sarobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TCR-induced FOXP3 expression by CD8+ T cells impairs their anti-tumor activity. Cancer Letters, 2022, 528, 45-58.	3.2	7
2	Neoantigens as potential vaccines in hepatocellular carcinoma. , 2022, 10, e003978.		16
3	Therapeutic Vaccines against Hepatocellular Carcinoma in the Immune Checkpoint Inhibitor Era: Time for Neoantigens?. International Journal of Molecular Sciences, 2022, 23, 2022.	1.8	13
4	Metformin keeps CD8+ T cells active and moving in NASH-HCC immunotherapy. Journal of Hepatology, 2022, 77, 593-595.	1.8	5
5	Inhibition of adjuvant-induced TAM receptors potentiates cancer vaccine immunogenicity and therapeutic efficacy. Cancer Letters, 2021, 499, 279-289.	3.2	7
6	Preclinical evaluation of a synthetic peptide vaccine against SARS-CoV-2 inducing multiepitopic and cross-reactive humoral neutralizing and cellular CD4 and CD8 responses. Emerging Microbes and Infections, 2021, 10, 1931-1946.	3.0	11
7	The mutational load and a T-cell inflamed tumour phenotype identify ovarian cancer patients rendering tumour-reactive T cells from PD-1+ tumour-infiltrating lymphocytes. British Journal of Cancer, 2021, 124, 1138-1149.	2.9	14
8	Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 525-543.	8.2	609
9	Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma. Cancers, 2020, 12, 3397.	1.7	17
10	Identification of neoantigen-reactive T cells in hepatocellular carcinoma: implication in adoptive T cell therapy. Journal of Hepatology, 2020, 73, S39-S40.	1.8	6
11	Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens. , 2020, 8, e000704.		8
12	Getting insights into hepatocellular carcinoma tumour heterogeneity by multiomics dissection. Gut, 2019, 68, 1913-1914.	6.1	5
13	ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity. Molecular Therapy, 2019, 27, 1878-1891.	3.7	38
14	When Cancer Vaccines Go Viral. Clinical Cancer Research, 2019, 25, 4871-4873.	3.2	3
15	Therapeutic Effect of Irreversible Electroporation in Combination with Poly-ICLC Adjuvant in Preclinical Models of Hepatocellular Carcinoma. Journal of Vascular and Interventional Radiology, 2019, 30, 1098-1105.	0.2	15
16	Genetic Modification of CD8+ T Cells to Express EGFR: Potential Application for Adoptive T Cell Therapies. Frontiers in Immunology, 2019, 10, 2990.	2.2	14
17	Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunology, Immunotherapy, 2019, 68, 379-393.	2.0	100
18	The Toll like receptor 4 ligand cold-inducible RNA-binding protein as vaccination platform against cancer. Oncolmmunology, 2018, 7, e1409321.	2.1	15

#	Article	IF	CITATIONS
19	Enhancement of Antitumor Vaccination by Targeting Dendritic Cell-Related IL-10. Frontiers in Immunology, 2018, 9, 1923.	2.2	17
20	Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Frontiers in Immunology, 2018, 9, 68.	2.2	14
21	Expansion of Tumor-Infiltrating CD8+ T cells Expressing PD-1 Improves the Efficacy of Adoptive T-cell Therapy. Cancer Research, 2017, 77, 3672-3684.	0.4	99
22	PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports, 2017, 20, 1818-1829.	2.9	220
23	IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget, 2017, 8, 2659-2671.	0.8	41
24	Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget, 2017, 8, 71709-71724.	0.8	27
25	Abstract 1059: Enhanced anti-tumor efficacy of a checkpoint inhibitor in combination with the HDAC inhibitor belinostat in a murine hepato-cellular carcinoma preclinical model. Cancer Research, 2017, 77, 1059-1059.	0.4	1
26	Gene expression analysis during acute hepatitis C virus infection associates dendritic cell activation with viral clearance. Journal of Medical Virology, 2016, 88, 843-851.	2.5	3
27	Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncolmmunology, 2016, 5, e1075113.	2.1	20
28	Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15006.	1.8	15
29	Tim-3 expression in tumour-associated macrophages: a new player in HCC progression. Gut, 2015, 64, 1502-1503.	6.1	20
30	Immune monitoring of immunosuppression withdrawal of liver transplant recipients. Transplant Immunology, 2015, 33, 110-116.	0.6	25
31	Radioembolization of hepatocellular carcinoma activates liver regeneration, induces inflammation and endothelial stress and activates coagulation. Liver International, 2015, 35, 1590-1596.	1.9	55
32	Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. Journal of Immunology, 2015, 195, 3180-3189.	0.4	44
33	Dysregulation of interferon regulatory factors impairs the expression of immunostimulatory molecules in hepatitis C virus genotype 1-infected hepatocytes. Gut, 2014, 63, 665-673.	6.1	19
34	Characterization of the CD40L/Oncostatin M/Oncostatin M receptor axis as an antiviral and immunostimulatory system disrupted in chronic HCV infection. Journal of Hepatology, 2014, 60, 482-489.	1.8	9
35	Trial of complete weaning from immunosuppression for liver transplant recipients: Factors predictive of tolerance. Liver Transplantation, 2013, 19, 937-944.	1.3	87
36	A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. Journal of Hepatology, 2013, 59, 81-88.	1.8	816

#	Article	IF	CITATIONS
37	A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses <i>In Vivo</i> . BioMed Research International, 2013, 2013, 1-9.	0.9	15
38	Helper cell-independent antitumor activity of potent CD8+T cell epitope peptide vaccines is dependent upon CD40L. Oncolmmunology, 2013, 2, e27009.	2.1	3
39	Dendritic cells: Nearly 40 years later…. Inmunologia (Barcelona, Spain: 1987), 2012, 31, 49-57.	0.1	0
40	Combination of a TLR4 ligand and anaphylatoxin C5a for the induction of antigen-specific cytotoxic T cell responses. Vaccine, 2012, 30, 2848-2858.	1.7	21
41	Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin. International Journal of Cancer, 2012, 131, 641-651.	2.3	34
42	Abstract 4387: Antiviral and antitumoral effects of the anti-CTLA4 agent tremelimumab in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C virus (HCV) infection: Results from a phase II clinical trial. Cancer Research, 2012, 72, 4387-4387.	0.4	8
43	Therapeutic effect of a peptide inhibitor of TGF-Î ² on pulmonary fibrosis. Cytokine, 2011, 53, 327-333.	1.4	66
44	Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. Journal of Hepatology, 2011, 54, 422-431.	1.8	68
45	Semblanza Francisco Borrás. Inmunologia (Barcelona, Spain: 1987), 2011, 30, 75-76.	0.1	0
46	Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunology, Immunotherapy, 2011, 60, 1383-1395.	2.0	21
47	Improved dendritic cell-based immunization against hepatitis C virus using peptide inhibitors of interleukin 10. Hepatology, 2011, 53, 23-31.	3.6	25
48	Enhanced T cell responses against hepatitis C virus by ex vivo targeting of adenoviral particles to dendritic cells. Hepatology, 2011, 54, 28-37.	3.6	25
49	Induction of Monocyte Chemoattractant Protein-1 and Interleukin-10 by TGFβ1 in Melanoma Enhances Tumor Infiltration and Immunosuppression. Cancer Research, 2011, 71, 812-821.	0.4	65
50	Adjuvant Combination and Antigen Targeting as a Strategy to Induce Polyfunctional and High-Avidity T-Cell Responses against Poorly Immunogenic Tumors. Cancer Research, 2011, 71, 3214-3224.	0.4	63
51	A Peptide Inhibitor of FOXP3 Impairs Regulatory T Cell Activity and Improves Vaccine Efficacy in Mice. Journal of Immunology, 2010, 185, 5150-5159.	0.4	97
52	Identification of CD4+ and CD8+ T cell epitopes of woodchuck hepatitis virus core and surface antigens in BALB/c mice. Vaccine, 2010, 28, 5323-5331.	1.7	4
53	Tumor therapy in mice by using a tumor antigen linked to modulin peptides from Staphylococcus epidermidis. Vaccine, 2010, 28, 7146-7154.	1.7	8
54	Oncostatin M Enhances the Antiviral Effects of Type I Interferon and Activates Immunostimulatory Functions in Liver Epithelial Cells. Journal of Virology, 2009, 83, 3298-3311.	1.5	33

#	Article	IF	CITATIONS
55	Peptide inhibitors of transforming growth factorâ€Î² enhance the efficacy of antitumor immunotherapy. International Journal of Cancer, 2009, 125, 2614-2623.	2.3	62
56	Induction of Multiepitopic and Long‣asting Immune Responses Against Tumour Antigens by Immunization with Peptides, DNA and Recombinant Adenoviruses Expressing Minigenes. Scandinavian Journal of Immunology, 2009, 69, 80-89.	1.3	12
57	Immunization against hepatitis C virus with a fusion protein containing the extra domain A from fibronectin and the hepatitis C virus NS3 protein. Journal of Hepatology, 2009, 51, 520-527.	1.8	21
58	The epidermal growth factor receptor ligand amphiregulin is a negative regulator of hepatic acute-phase gene expression. Journal of Hepatology, 2009, 51, 1010-1020.	1.8	17
59	Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunology, Immunotherapy, 2008, 57, 19-29.	2.0	44
60	Cells as vehicles for therapeutic genes to treat liver diseases. Gene Therapy, 2008, 15, 765-771.	2.3	10
61	Monocyteâ€derived dendritic cells from HCVâ€infected patients transduced with an adenovirus expressing NS3 are functional when stimulated with the TLR3 ligand poly(I:C). Journal of Viral Hepatitis, 2008, 15, 782-789.	1.0	8
62	Vaccination Against Hepatitis C Virus With Dendritic Cells Transduced With an Adenovirus Encoding NS3 Protein. Molecular Therapy, 2008, 16, 210-217.	3.7	39
63	Depletion of Dendritic Cells Delays Ovarian Cancer Progression by Boosting Antitumor Immunity. Cancer Research, 2008, 68, 7684-7691.	0.4	105
64	In Vitro and In Vivo Down-Regulation of Regulatory T Cell Activity with a Peptide Inhibitor of TGF-β1. Journal of Immunology, 2008, 181, 126-135.	0.4	63
65	A synthetic peptide from transforming growth factor-Â1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovascular Research, 2008, 81, 601-609.	1.8	89
66	The Extra Domain A from Fibronectin Targets Antigens to TLR4-Expressing Cells and Induces Cytotoxic T Cell Responses In Vivo. Journal of Immunology, 2007, 178, 748-756.	0.4	89
67	Upregulation of Indoleamine 2,3-Dioxygenase in Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 3662-3666.	1.5	116
68	Identification of peptide inhibitors of transforming growth factor beta 1 using a phage-displayed peptide library. Cytokine, 2007, 39, 106-115.	1.4	69
69	Engineered promiscuous T helper peptides for the induction of immune responses. Molecular Immunology, 2007, 44, 2205-2212.	1.0	2
70	The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFNγ. International Journal of Cancer, 2007, 121, 1282-1295.	2.3	16
71	Induction of potent and long-lasting CD4 and CD8 T-cell responses against hepatitis C virus by immunization with viral antigens plus poly(I:C) and anti-CD40. Antiviral Research, 2007, 74, 25-35.	1.9	12
72	Characterization of T-cell responses against immunodominant epitopes from hepatitis C virus E2 and NS4a proteins. Journal of Viral Hepatitis, 2006, 13, 47-55.	1.0	18

#	Article	IF	CITATIONS
73	Epitope Enhancement of a CD4 HIV Epitope toward the Development of the Next Generation HIV Vaccine. Journal of Immunology, 2006, 176, 3753-3759.	0.4	15
74	Is plasma cardiotrophin-1 a marker of hypertensive heart disease?. Journal of Hypertension, 2005, 23, 625-632.	0.3	72
75	The DSS LOGDIS Optimizes Delivery Routes for FRILAC's Frozen Products. Interfaces, 2005, 35, 202-214.	1.6	17
76	Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus. Vaccine, 2005, 23, 3493-3499.	1.7	36
77	Carcinoembryonic Antigen as a Target to Induce Anti-Tumor Immune Responses. Current Cancer Drug Targets, 2004, 4, 443-454.	0.8	21
78	Identification and Characterization of a T-Helper Peptide from Carcinoembryonic Antigen. Clinical Cancer Research, 2004, 10, 2860-2867.	3.2	14
79	MAGE antigens: therapeutic targets in hepatocellular carcinoma?. Journal of Hepatology, 2004, 40, 155-158.	1.8	2
80	387 Protection against infection with an HCV-recombinant vaccinia virus by vaccination with an adenoviral vector enconding hepatitis C virus (HCV) NS4A protein. Journal of Hepatology, 2004, 40, 115-116.	1.8	1
81	A recombinant adenovirus encoding hepatitis C virus core and E1 proteins protects mice against cytokine-induced liver damage. Hepatology, 2003, 37, 461-470.	3.6	23
82	CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-γ-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination. Journal of Immunology, 2003, 171, 5931-5939.	0.4	186
83	Hepatitis C Virus Structural Proteins Impair Dendritic Cell Maturation and Inhibit In Vivo Induction of Cellular Immune Responses. Journal of Virology, 2003, 77, 10862-10871.	1.5	127
84	Engineering Th determinants for efficient priming of humoral and cytotoxic T cell responses. International Immunology, 2003, 15, 691-699.	1.8	2
85	Abnormal Priming of CD4+ T Cells by Dendritic Cells Expressing Hepatitis C Virus Core and E1 Proteins. Journal of Virology, 2002, 76, 5062-5070.	1.5	141
86	Vaccination with an adenoviral vector encoding hepatitis C virus (HCV) NS3 protein protects against infection with HCV-recombinant vaccinia virus. Vaccine, 2002, 21, 202-210.	1.7	57
87	Identification of HLA-B27-restricted cytotoxic T lymphocyte epitope from carcinoembryonic antigen. International Journal of Cancer, 2002, 97, 58-63.	2.3	11
88	Enhancing immunogenicity of a CTL epitope from carcinoembryonic antigen by selective amino acid replacements. Clinical Cancer Research, 2002, 8, 2336-44.	3.2	25
89	Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clinical Cancer Research, 2002, 8, 3219-25.	3.2	44
90	T-helper cell response to woodchuck hepatitis virus antigens after therapeutic vaccination of chronically-infected animals treated with lamivudine. Journal of Hepatology, 2001, 35, 105-111.	1.8	30

#	Article	IF	CITATIONS
91	Characterization of an immunologically conserved epitope from hepatitis C virus E2 glycoprotein recognized by HLA-A2 restricted cytotoxic T lymphocytes. Journal of Hepatology, 2001, 34, 321-329.	1.8	19
92	Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. European Journal of Immunology, 2001, 31, 1780-1789.	1.6	77
93	Specific and general HLA-DR binding motifs: comparison of algorithms. Human Immunology, 2000, 61, 266-278.	1.2	50
94	Th1 but not Th0 cell help is efficient to induce cytotoxic T lymphocytes by immunization with short synthetic peptides. International Immunology, 1999, 11, 2025-2034.	1.8	21
95	Synthesis and anti-HIV-1 activities of new pyrimido[5,4-b]indoles. Il Farmaco, 1999, 54, 255-264.	0.9	16
96	Enhanced in vitro potency and in vivo immunogenicity of a CTL epitope from hepatitis C virus core protein following amino acid replacement at secondary HLA-A2.1 binding positions Journal of Clinical Investigation, 1998, 102, 1239-1248.	3.9	88
97	Therapeutic vaccination of woodchucks against chronic woodchuck hepatitis virus infection. Journal of Hepatology, 1997, 27, 726-737.	1.8	50
98	Production of interleukin-2 in response to synthetic peptides from hepatitis C virus E1 protein in patients with chronic hepatitis C: relationship with the response to interferon treatment. Journal of Hepatology, 1996, 25, 1-9.	1.8	40
99	Further Insights on the Inhibition of HIV Type 1 Infection <i>in Vitro</i> by CD4-Modified Synthetic Peptides Containing Phenylalanine. AIDS Research and Human Retroviruses, 1996, 12, 1023-1030.	0.5	0
100	Fine Analysis of Immunoreactivity of V3 Peptides: Antibodies Specific for V3 Domain of Laboratory HIV Type 1 Strains Recognize Multiple V3 Sequences Synthesized from Field HIV Type 1 Isolates. AIDS Research and Human Retroviruses, 1996, 12, 1671-1679.	0.5	2
101	Short Communication: B Cell Epitopes of HIV Type 1 p24 Capsid Protein: A Reassessment. AIDS Research and Human Retroviruses, 1996, 12, 519-525.	0.5	7
102	Simple strategy to induce antibodies of distinct specificity: Application to the mapping of gp120 and inhibition of HIV-1 infectivity. European Journal of Immunology, 1995, 25, 877-883.	1.6	48
103	Indoles and pyridazino[4,5-b]indoles as nonnucleoside analog inhibitors of HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 1995, 30, 963-971.	2.6	21
104	In vivo cytotoxic T-lymphocyte induction may take place via CD8+ T helper lymphocytes. Research in Immunology, 1995, 146, 35-44.	0.9	11
105	Overcoming class II-linked non-responsiveness to hepatitis B vaccine. Vaccine, 1994, 12, 867-871.	1.7	15
106	Enhancement of peptide immunogenicity by insertion of a cathepsin B cleavage site between determinants recognized by B and T cells. Research in Immunology, 1993, 144, 257-262.	0.9	17
107	Induction of cytotoxic T lymphocytes in mice against the principal neutralizing domain of HIV-1 by immunization with an engineered T-cytotoxic-T-helper synthetic peptide construct. Cellular Immunology, 1992, 141, 211-218.	1.4	45
108	Insights on the amino acid side-chain interactions of a synthetic T-cell determinant. Biologicals, 1991, 19, 187-190.	0.5	40

#	Article	IF	CITATIONS
109	Induction of antibodies against a peptide hapten does not require covalent linkage between the hapten and a class II presentable T helper peptide. European Journal of Immunology, 1991, 21, 1555-1558.	1.6	40
110	Polarity of immunogens: implications for vaccine design. European Journal of Immunology, 1990, 20, 2363-2366.	1.6	57