Letizia Zullo

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7421834/publications.pdf
Version: 2024-02-01

Protocol for controlled behavioral testing of octopuses using a single-arm tactile discrimination
two-choice task. STAR Protocols, 2022, 3, 101192.

How octopus arm muscle contractile properties and anatomical organization contribute to arm functional specialization. Journal of Experimental Biology, 2022, 225, .

Beyond muscles: role of intramuscular connective tissue elasticity and passive stiffness in octopus arm muscle function. Journal of Experimental Biology, 2021, 224, .

4 The Diversity of Muscles and Their Regenerative Potential across Animals. Cells, 2020, 9, 1925.
$4.1 \quad 9$

5 Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Current Biology, 2020, 30, 4322-4327.e3.
$3.9 \quad 34$

Synapsins are expressed at neuronal and non-neuronal locations in Octopus vulgaris. Scientific
Reports, 2019, 9, 15430.

From synaptic input to muscle contraction: arm muscle cells of <i> Octopus vulgaris</i> show unique
7 neuromuscular junction and excitationấ"contraction coupling properties. Proceedings of the Royal
Society B: Biological Sciences, 2019, 286, 20191278.

8 Optical lace for synthetic afferent neural networks. Science Robotics, 2019, 4, .
17.6

56
mTOR as a Marker of Exercise and Fatigue in Octopus vulgaris Arm. Frontiers in Physiology, 2019, 10,
1161.

Motor control pathways in the nervous system of Octopus vulgaris arm. Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 271-279.

Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes.
11 Nutrition, Metabolism and Cardiovascular Diseases, 2018, 28, 418-424.

Small-Animal 18F-FDG PET for Research on Octopus vulgaris: Applications and Future Directions in
Invertebrate Neuroscience and Tissue Regeneration. Journal of Nuclear Medicine, 2018, 59, 1302-1307.

Cephalopods Between Science, Art, and Engineering: A Contemporary Synthesis. Frontiers in
1.2

Communication, 2018, 3, .

Molecular Determinants of Cephalopod Muscles and Their Implication in Muscle Regeneration. Frontiers in Cell and Developmental Biology, 2017, 5, 53.

Embodiment design of soft continuum robots. Advances in Mechanical Engineering, 2016, 8, 168781401664330.

The making of an octopus arm. EvoDevo, 2015, 6, 19.
3.2

Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and
Regeneration: a Conserved Role for ACHE?. Molecular Neurobiology, 2015, 52, 45-56.
4.0

Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebrate Neuroscience, 2014, 14,
13-36.

20 A pragmatic bio-inspired approach to the design of octopus-inspired arms. , 2013, , .

21 The application of embodiment theory to the design and control of an octopus-like robotic arm. , 2012,
A new perspective on the organization of an invertebrate brain. Communicative and Integrative

Biology, 2011, 4, 26-29. \quad\begin{tabular}{l}
1.4

24

A new perspective on the organization of an invertebrate brain. Communicative and Integrative
Biology, 2011, 4, 26-9.

\hline | Nonsomatotopic Organization of the Higher Motor Centers in Octopus. Current Biology, 2009, 19, |
| :--- |
| $1632-1636$. |

\end{tabular}

