Haojun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421720/publications.pdf

Version: 2024-02-01

		1040056	888059
17	267	9	17
papers	citations	h-index	g-index
17	17	17	109
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characteristic analysis of the GNSS satellite clock. Advances in Space Research, 2021, 68, 3314-3326.	2.6	10
2	Estimation and evaluation of the triple-frequency GPS satellite inter-frequency clock bias. Survey Review, 2020, 52, 31-37.	1.2	1
3	Modeling and application of the time-varying GPS differential code bias between C1 and P1 observations. Advances in Space Research, 2020, 65, 552-559.	2.6	2
4	Evaluation and Application of the GPS Code Observable in Precise Point Positioning. Journal of Navigation, 2019, 72, 1633-1648.	1.7	4
5	Investigation and Validation of the Time-Varying Characteristic for the GPS Differential Code Bias. Remote Sensing, 2019, 11, 428.	4.0	10
6	Service and Evaluation of the GPS Triple-Frequency Satellite Clock Offset. Journal of Navigation, 2018, 71, 1263-1273.	1.7	3
7	Introduction of the Double-Differenced Ambiguity Resolution into Precise Point Positioning. Remote Sensing, 2018, 10, 1779.	4.0	4
8	Modeling of the GPS satellite clock error and its performance evaluation in precise point positioning. Advances in Space Research, 2018, 62, 845-854.	2.6	16
9	Impact of GPS differential code bias in dual- and triple-frequency positioning and satellite clock estimation. GPS Solutions, 2017, 21, 897-903.	4.3	25
10	Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS. GPS Solutions, 2016, 20, 751-760.	4.3	46
11	A new differential code bias (C1–P1) estimation method and its performance evaluation. GPS Solutions, 2016, 20, 321-329.	4.3	13
12	Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites. GPS Solutions, 2013, 17, 347-355.	4.3	46
13	Precise absolute positioning for a single-frequency user. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1591-1597.	5.1	3
14	Modeling and initial assessment of the inter-frequency clock bias for COMPASS GEO satellites. Advances in Space Research, 2013, 51, 2277-2284.	2.6	16
15	Satellite- and Epoch Differenced Precise Point Positioning Based on a Regional Augmentation Network. Sensors, 2012, 12, 7518-7528.	3.8	8
16	Estimation of the inter-frequency clock bias for the satellites of PRN25 and PRN01. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2186-2193.	5.1	36
17	Network based real-time precise point positioning. Advances in Space Research, 2010, 46, 1218-1224.	2.6	24