Tianchao Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421222/publications.pdf

Version: 2024-02-01

57	1,924 citations	304368	253896 43 g-index
papers	citations	h-index	g-ındex
59 all docs	59 docs citations	59 times ranked	3832 citing authors

#	Article	IF	CITATIONS
1	Phosphorene. , 2022, , 121-148.		1
2	Epitaxial Growth of Main Group Monoelemental 2D Materials. Advanced Functional Materials, 2021, 31, 2006997.	7.8	37
3	Phase Engineering of Epitaxial Stanene on a Surface Alloy. Journal of Physical Chemistry Letters, 2021, 12, 211-217.	2.1	6
4	Lateral epitaxial growth of two-dimensional heterostructure linked by gold adatoms. Nano Research, 2021, 14, 887-892.	5.8	3
5	Atomic mechanism of the phase transition in monolayer bismuthene on copper oxide. Physical Review Materials, 2021, 5, .	0.9	4
6	Experimental Realization and Phase Engineering of a Two-Dimensional SnSb Binary Honeycomb Lattice. ACS Nano, 2021, 15, 16335-16343.	7.3	5
7	Two-Dimensional Iron Oxide on Au(111): Growth Mechanism and Interfacial Properties. Journal of Physical Chemistry C, 2021, 125, 24755-24763.	1.5	4
8	Largeâ€Scale Synthesis of Strainâ€Tunable Semiconducting Antimonene on Copper Oxide. Advanced Materials, 2020, 32, e1906873.	11.1	46
9	Interface-doping modulated structural and electronic properties of two-dimensional silica supported on metal substrate. Applied Surface Science, 2020, 506, 144677.	3.1	1
10	Epitaxial growth of elemental 2D materials: What can we learn from the periodic table?. Nano Today, 2020, 30, 100805.	6.2	18
11	Carbon nanotubes advance next-generation electronics. Nano Today, 2020, 35, 100992.	6.2	11
12	Tailoring structural features and functions of fullerene rod crystals by a ferrocene-modified fullerene derivative. CrystEngComm, 2020, 22, 6287-6294.	1.3	7
13	Bio-Inspired Passion Fruit-like Fe ₃ O ₄ @C Nanospheres Enabling High-Stability Magnetorheological Performances. Langmuir, 2020, 36, 7706-7714.	1.6	15
14	Epitaxial Growth of Flat, Metallic Monolayer Phosphorene on Metal Oxide. ACS Nano, 2020, 14, 2385-2394.	7.3	27
15	Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature. Journal of Chemical Physics, 2020, 152, 074710.	1.2	10
16	Epitaxial growth of single tellurium atomic wires on a Cu2Sb surface alloy. Applied Physics Letters, 2020, 116, .	1.5	10
17	Recent Advances in Tin: From Two-Dimensional Quantum Spin Hall Insulator to Bulk Dirac Semimetal. Journal of Physical Chemistry Letters, 2020, 11, 1317-1329.	2.1	15
18	Surface Engineering of Twoâ€Dimensional Materials. ChemNanoMat, 2019, 5, 6-23.	1.5	22

#	Article	IF	Citations
19	Interfacial Effects on the Growth of Atomically Thin Film: Group VA Elements on Au(111). Advanced Materials Interfaces, 2019, 6, 1901050.	1.9	14
20	Imaging and Dynamics of Water Hexamer Confined in Nanopores. ACS Nano, 2019, 13, 10622-10630.	7.3	10
21	2Dâ€(Alumino)Silicateâ€Noble Clathrates: Ionizationâ€Facilitated Formation of 2D (Alumino)Silicate–Noble Gas Clathrate Compounds (Adv. Funct. Mater. 20/2019). Advanced Functional Materials, 2019, 29, 1970137.	7.8	0
22	Singleâ€Crystal Graphene Wafers: Epitaxial Growth of 6 in. Singleâ€Crystalline Graphene on a Cu/Ni (111) Film at 750 °C via Chemical Vapor Deposition (Small 22/2019). Small, 2019, 15, 1970120.	5.2	0
23	Modulating Epitaxial Atomic Structure of Antimonene through Interface Design. Advanced Materials, 2019, 31, e1902606.	11.1	84
24	Defect Generation and Surface Functionalization on Epitaxial Blue Phosphorene by C60 Adsorption. Journal of Physical Chemistry C, 2019, , .	1.5	13
25	Submolecular Imaging of Parallel Offset π–π Stacking in Nonplanar Phthalocyanine Bilayers. Journal of Physical Chemistry C, 2019, 123, 7178-7184.	1.5	4
26	lonizationâ€Facilitated Formation of 2D (Alumino)Silicate–Noble Gas Clathrate Compounds. Advanced Functional Materials, 2019, 29, 1806583.	7.8	20
27	Epitaxial Growth of 6 in. Singleâ€Crystalline Graphene on a Cu/Ni (111) Film at 750 °C via Chemical Vapor Deposition. Small, 2019, 15, e1805395.	5.2	71
28	Conformational Transitions of Phase-Separated Binary Molecules Assisted by Surface Dehalogenation. Langmuir, 2019, 35, 3507-3512.	1.6	1
29	Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 2018, 34, 553-560.	1.6	18
30	Old materials with new properties II: The metal carbides. Nano Today, 2018, 18, 12-14.	6.2	26
31	Oxygen-Promoted Methane Activation on Copper. Journal of Physical Chemistry B, 2018, 122, 855-863.	1.2	29
32	Two-dimensional black phosphorus: its fabrication, functionalization and applications. Nanoscale, 2018, 10, 21575-21603.	2.8	73
33	Surface Reconstruction of Germanium: Hydrogen Intercalation and Graphene Protection. Journal of Physical Chemistry C, 2018, 122, 21874-21882.	1.5	19
34	Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX ₃ /ZnS Quantum Dot Heterostructure. Small, 2017, 13, 1604085.	5.2	195
35	Phosphorus Nanostripe Arrays on Cu(110): A Case Study to Understand the Substrate Effect on the Phosphorus thin Film Growth. Advanced Materials Interfaces, 2017, 4, 1601167.	1.9	18
36	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11

3

#	Article	IF	CITATIONS
37	New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12, 7-9.	6.2	19
38	Copperâ€Vaporâ€Assisted Rapid Synthesis of Large ABâ€Stacked Bilayer Graphene Domains on Cuâ€Ni Alloy. Small, 2016, 12, 2009-2013.	5.2	39
39	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Letters, 2016, 16, 3160-3165.	4.5	92
40	Graphene: Copper-Vapor-Assisted Rapid Synthesis of Large AB-Stacked Bilayer Graphene Domains on Cu-Ni Alloy (Small 15/2016). Small, 2016, 12, 1962-1962.	5.2	3
41	Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 2015, 9, 164-171.	7.3	125
42	Surface strain mediated dipole alignment of ClAlPc on Au(111). Applied Physics Letters, 2015, 106, .	1.5	9
43	Electric-Field-Induced Molecular Switch of Single Dipolar Phthalocyanine on Cu(111): A Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2015, 119, 19802-19807.	1.5	11
44	From two-dimensional materials to heterostructures. Progress in Surface Science, 2015, 90, 21-45.	3.8	123
45	CHAPTER 3. Low-Dimensional Supramolecular Assemblies on Surfaces. RSC Smart Materials, 2014, , 98-118.	0.1	2
46	Single molecule tunneling spectroscopy investigation of reversibly switched dipolar vanadyl phthalocyanine on graphite. Applied Physics Letters, 2014, 104, .	1.5	13
47	Molecular Ordering and Dipole Alignment of Vanadyl Phthalocyanine Monolayer on Metals: The Effects of Interfacial Interactions. Journal of Physical Chemistry C, 2014, 118, 4151-4159.	1.5	38
48	Elementary Process for CVD Graphene on Cu(110): Size-selective Carbon Clusters. Scientific Reports, 2014, 4, 4431.	1.6	30
49	Exploring Single Molecules by Scanning Probe Microscopy: Porphyrin and Phthalocyanine. Journal of Physical Chemistry Letters, 2013, 4, 4095-4102.	2.1	35
50	Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie - International Edition, 2013, 52, 14121-14126.	7.2	125
51	Facile synthesis of uniform \hat{l}_{\pm} -Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. Journal of Materials Chemistry A, 2013, 1, 7242.	5.2	92
52	Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene. Journal of the American Chemical Society, 2013, 135, 8409-8414.	6.6	132
53	Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 9050-9054.	6.6	63
54	Self-Assembly of Polar Phthalocyanine Molecules on Graphene Grown by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21849-21855.	1.5	42

Tianchao Niu

#	Article	IF	CITATION
55	Dipole Orientation Dependent Symmetry Reduction of Chloroaluminum Phthalocyanine on Cu(111). Journal of Physical Chemistry C, 2013, 117, 1013-1019.	1.5	38
56	Substrate Reconstruction Mediated Unidirectionally Aligned Molecular Dipole Dot Arrays. Journal of Physical Chemistry C, 2012, 116, 11565-11569.	1.5	20
57	Structure of water at ionic liquid/Ag interface probed by surface enhanced Raman spectroscopy. Science China Chemistry, 2011, 54, 200-204.	4.2	5