Roland Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421193/publications.pdf

Version: 2024-02-01

34076 30894 11,109 122 52 102 citations h-index g-index papers 130 130 130 17628 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell, 2013, 152, 25-38.	13.5	889
2	Comparison of gene expression profiles between human and mouse monocyte subsets. Blood, 2010, 115, e10-e19.	0.6	609
3	Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. Journal of Immunology, 2002, 169, 2253-2263.	0.4	521
4	Cutting Edge: Mincle Is Essential for Recognition and Adjuvanticity of the Mycobacterial Cord Factor and its Synthetic Analog Trehalose-Dibehenate. Journal of Immunology, 2010, 184, 2756-2760.	0.4	434
5	SOCS3 regulates the plasticity of gp130 signaling. Nature Immunology, 2003, 4, 546-550.	7.0	394
6	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	6.6	352
7	DUSP Meet Immunology: Dual Specificity MAPK Phosphatases in Control of the Inflammatory Response. Journal of Immunology, 2006, 177, 7497-7504.	0.4	300
8	Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. Journal of Experimental Medicine, 2006, 203, 15-20.	4.2	298
9	Adjuvanticity of a synthetic cord factor analogue for subunit ⟨i⟩Mycobacterium tuberculosis⟨li⟩ vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. Journal of Experimental Medicine, 2009, 206, 89-97.	4.2	290
10	Efficient Hematopoietic Differentiation of Human Embryonic Stem Cells on Stromal Cells Derived from Hematopoietic Niches. Cell Stem Cell, 2008, 3, 85-98.	5.2	276
11	Cutting Edge: Stat6-Dependent Substrate Depletion Regulates Nitric Oxide Production. Journal of Immunology, 2001, 166, 2173-2177.	0.4	268
12	Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. Journal of Leukocyte Biology, 2008, 83, 692-701.	1.5	265
13	Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAFO1): A Versatile Adjuvant for Vaccines with Different Immunological Requirements. PLoS ONE, 2008, 3, e3116.	1.1	262
14	Enhancer-Mediated Control of Macrophage-Specific Arginase I Expression. Journal of Immunology, 2004, 172, 7565-7573.	0.4	210
15	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	3.5	178
16	Differential Recognition of TLR-Dependent Microbial Ligands in Human Bronchial Epithelial Cells. Journal of Immunology, 2007, 178, 3134-3142.	0.4	169
17	The <i>Helicobacter pylori</i> Blood Group Antigen-Binding Adhesin Facilitates Bacterial Colonization and Augments a Nonspecific Immune Response. Journal of Immunology, 2002, 168, 3033-3041.	0.4	166
18	Extracellular and Intracellular Pattern Recognition Receptors Cooperate in the Recognition of Helicobacter pylori. Gastroenterology, 2009, 136, 2247-2257.	0.6	162

#	Article	IF	Citations
19	Suppressor of cytokine signaling 1 (SOCS1) limits <scp>NFκB</scp> signaling by decreasing p65 stability within the cell nucleus. FASEB Journal, 2011, 25, 863-874.	0.2	158
20	Autocrine Deactivation of Macrophages in Transgenic Mice Constitutively Overexpressing IL-10 Under Control of the Human CD68 Promoter. Journal of Immunology, 2002, 168, 3402-3411.	0.4	149
21	Opposing functions of IKK \hat{I}^2 during acute and chronic intestinal inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15058-15063.	3.3	148
22	Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes. Infection and Immunity, 2006, 74, 4295-4309.	1.0	146
23	The phosphoproteome of tollâ€like receptorâ€activated macrophages. Molecular Systems Biology, 2010, 6, 371.	3.2	142
24	Helicobacter pyloriHopH (OipA) and Bacterial Pathogenicity: Genetic and Functional Genomic Analysis ofhopHGene Polymorphisms. Journal of Infectious Diseases, 2006, 194, 1346-1355.	1.9	131
25	Autocrine IL-10 Induces Hallmarks of Alternative Activation in Macrophages and Suppresses Antituberculosis Effector Mechanisms without Compromising T Cell Immunity. Journal of Immunology, 2009, 183, 1301-1312.	0.4	130
26	The Mincle-Activating Adjuvant TDB Induces MyD88-Dependent Th1 and Th17 Responses through IL-1R Signaling. PLoS ONE, 2013, 8, e53531.	1.1	130
27	Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN- \hat{l}^2 production in myeloid dendritic cells. European Journal of Immunology, 2007, 37, 315-327.	1.6	125
28	Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10. European Journal of Immunology, 2005, 35, 2991-3001.	1.6	114
29	Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. European Journal of Immunology, 2004, 34, 558-564.	1.6	111
30	Tristetraprolinâ€driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Molecular Systems Biology, 2011, 7, 560.	3.2	110
31	Amyloidogenic amyloid- \hat{l}^2 -peptide variants induce microbial agglutination and exert antimicrobial activity. Scientific Reports, 2016, 6, 32228.	1.6	110
32	Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ upon LPS Activation in the Presence of Ample Oxygen. Cell Reports, 2015, 13, 2048-2055.	2.9	106
33	A Helminth Immunomodulator Exploits Host Signaling Events to Regulate Cytokine Production in Macrophages. PLoS Pathogens, 2011, 7, e1001248.	2.1	105
34	Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor $1\hat{l}\pm$ (HIF1A) and result in differential HIF1A-dependent gene expression. Journal of Leukocyte Biology, 2011, 90, 551-562.	1.5	102
35	Tristetraprolin Is Required for Full Anti-Inflammatory Response of Murine Macrophages to IL-10. Journal of Immunology, 2009, 183, 1197-1206.	0.4	96
36	Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. Journal of Clinical Investigation, 2020, 130, 4811-4830.	3.9	93

#	Article	IF	CITATIONS
37	Dual-Specificity Phosphatases in Immunity and Infection: An Update. International Journal of Molecular Sciences, 2019, 20, 2710.	1.8	92
38	Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. European Journal of Immunology, 2004, 34, 2863-2873.	1.6	89
39	A genome-wide analysis of LPS tolerance in macrophages. Immunobiology, 2008, 212, 723-737.	0.8	89
40	Contribution of MINCLE–SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. Journal of Immunology, 2015, 195, 2417-2428.	0.4	88
41	Pronounced Phenotype in Activated Regulatory T Cells during a Chronic Helminth Infection. Journal of Immunology, 2010, 184, 713-724.	0.4	84
42	Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology, 2013, 218, 506-516.	0.8	82
43	Toll-Like Receptor–Dependent Activation of Antigen-Presenting Cells Affects Adaptive Immunity to Helicobacter pylori. Gastroenterology, 2007, 133, 150-163.e3.	0.6	80
44	Transcript profiling of <scp>CD</scp> 16â€positive monocytes reveals a unique molecular fingerprint. European Journal of Immunology, 2012, 42, 957-974.	1.6	80
45	Highly sensitive detection of earlyâ€stage pancreatic cancer by multimodal nearâ€infrared molecular imaging in living mice. International Journal of Cancer, 2008, 123, 2138-2147.	2.3	77
46	Secreted Frizzled-Related Protein 1 Extrinsically Regulates Cycling Activity and Maintenance of Hematopoietic Stem Cells. Cell Stem Cell, 2009, 5, 157-167.	5.2	71
47	Contact, Collaboration, and Conflict: Signal Integration of Syk-Coupled C-Type Lectin Receptors. Journal of Immunology, 2017, 198, 1403-1414.	0.4	70
48	Cellular Target Genes of Epstein-Barr Virus Nuclear Antigen 2. Journal of Virology, 2006, 80, 9761-9771.	1.5	68
49	IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity, 2021, 54, 2531-2546.e5.	6.6	67
50	Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes. PLoS Pathogens, 2009, 5, e1000506.	2.1	66
51	Tuning of macrophage responses by Stat3-inducing cytokines: molecular mechanisms and consequences in infection. Immunobiology, 2005, 210, 63-76.	0.8	64
52	B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 801-813.	2.5	63
53	Differential Control of Mincle-Dependent Cord Factor Recognition and Macrophage Responses by the Transcription Factors C/EBP \hat{l}^2 and HIF1 \hat{l}_\pm . Journal of Immunology, 2014, 193, 3664-3675.	0.4	58
54	<i>Brucella abortus</i> down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). Journal of Leukocyte Biology, 2017, 101, 759-773.	1.5	50

#	Article	IF	CITATIONS
55	Role of Viral Factor E3L in Modified Vaccinia Virus Ankara Infection of Human HeLa Cells: Regulation of the Virus Life Cycle and Identification of Differentially Expressed Host Genes. Journal of Virology, 2005, 79, 2584-2596.	1.5	49
56	Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Frontiers in Immunology, 2013, 4, 5.	2.2	49
57	Increased inflammation and lethality of <i>Dusp1</i> ^{â^'/â^'} mice in polymicrobial peritonitis models. Immunology, 2010, 131, 395-404.	2.0	48
58	Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages <i>inÂvitro</i> and adjuvant activity <i>inÂvivo</i> lnnate Immunity, 2016, 22, 405-418.	1.1	47
59	Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: Findings, implications and open questions. Immunobiology, 2011, 216, 1184-1191.	0.8	45
60	Airborne Indoor Particles from Schools Are More Toxic than Outdoor Particles. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 575-582.	1,4	45
61	The C-Type Lectin Receptor Mincle Binds to Streptococcus pneumoniae but Plays a Limited Role in the Anti-Pneumococcal Innate Immune Response. PLoS ONE, 2015, 10, e0117022.	1.1	44
62	Absence of Siglec-H in MCMV Infection Elevates Interferon Alpha Production but Does Not Enhance Viral Clearance. PLoS Pathogens, 2013, 9, e1003648.	2.1	41
63	lgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. European Journal of Immunology, 2017, 47, 2070-2079.	1.6	41
64	Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guérin. Journal of Immunology, 2009, 183, 2294-2302.	0.4	39
65	Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 <i>inÂvitro</i> . Innate Immunity, 2016, 22, 181-185.	1.1	39
66	Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3120-3125.	3.3	38
67	Molecular diagnosis of polymicrobial brain abscesses with 16S-rDNA-based next-generation sequencing. Clinical Microbiology and Infection, 2021, 27, 76-82.	2.8	37
68	WASPâ^' mice exhibit defective immune responses to influenza A virus, Streptococcus pneumoniae, and Mycobacterium bovis BCG. Experimental Hematology, 2005, 33, 443-451.	0.2	36
69	Axonal Degeneration Is Regulated by a Transcriptional Program that Coordinates Expression of Proand Anti-degenerative Factors. Neuron, 2016, 92, 991-1006.	3.8	36
70	Trehalose dimycolate interferes with $Fc\hat{l}^3R$ -mediated phagosome maturation through Mincle, SHP-1 and $Fc\hat{l}^3R$ IIB signalling. PLoS ONE, 2017, 12, e0174973.	1.1	36
71	MyD88-dependent changes in the pulmonary transcriptome after infection withChlamydia pneumoniae. Physiological Genomics, 2007, 30, 134-145.	1.0	35
72	Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids. Journal of Molecular Medicine, 2008, 86, 323-332.	1.7	33

#	Article	IF	Citations
73	Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in Dusp1-/mice: critical role of IL-6. Journal of Leukocyte Biology, 2010, 88, 579-587.	1.5	33
74	IL-27 Induced by Select <i>Candida</i> spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. Journal of Immunology, 2016, 197, 208-221.	0.4	33
75	Uncovering information on expression of natural antisense transcripts in Affymetrix MOE430 datasets. BMC Genomics, 2007, 8, 200.	1.2	32
76	Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids. Infection and Immunity, 2017, 85, .	1.0	31
77	Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. European Journal of Immunology, 1999, 29, 3496-3506.	1.6	30
78	A rapid method for semiquantitative analysis of the human $\hat{V^2}$ -repertoire using TaqManR PCR. Journal of Immunological Methods, 1997, 203, 181-192.	0.6	29
79	Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional Antibacterial Effector Mechanism of Macrophages. Cell Reports, 2019, 26, 3502-3510.e6.	2.9	29
80	Inflammatory Properties and Adjuvant Potential of Synthetic Glycolipids Homologous to Mycolate Esters of the Cell Wall of <i>Mycobacterium tuberculosis</i> . Journal of Innate Immunity, 2017, 9, 162-180.	1.8	28
81	Class I myosin <i>Myo1e</i> regulates <scp>TLR</scp> 4â€triggered macrophage spreading, chemokine release, and antigen presentation via <scp>MHC</scp> class II. European Journal of Immunology, 2015, 45, 225-237.	1.6	27
82	IL- $1\hat{l}\pm$ Reversibly Inhibits Skeletal Muscle Ryanodine Receptor. A Novel Mechanism for Critical Illness Myopathy?. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1096-1106.	1.4	26
83	Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. Vaccine, 2019, 37, 3061-3070.	1.7	25
84	Measurement of TLR-Induced Macrophage Spreading by Automated Image Analysis: Differential Role of Myd88 and MAPK in Early and Late Responses. Frontiers in Physiology, 2011, 2, 71.	1.3	23
85	Gene Trap Mice Reveal an Essential Function of Dual Specificity Phosphatase Dusp16/MKP-7 in Perinatal Survival and Regulation of Toll-like Receptor (TLR)-induced Cytokine Production. Journal of Biological Chemistry, 2014, 289, 2112-2126.	1.6	23
86	$IKK\hat{l}\pm$ Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells. Cell Reports, 2014, 7, 1914-1925.	2.9	22
87	Cytokineâ€dependent regulation of dendritic cell differentiation in the splenic microenvironment. European Journal of Immunology, 2014, 44, 500-510.	1.6	21
88	Organ-Specific Role of MyD88 for Gene Regulation during Polymicrobial Peritonitis. Infection and Immunity, 2006, 74, 3618-3632.	1.0	20
89	Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. Journal of Allergy and Clinical Immunology, 2017, 139, 1873-1884.e10.	1.5	20
90	Macrophage Phosphoproteome Analysis Reveals MINCLE-dependent and -independent Mycobacterial Cord Factor Signaling. Molecular and Cellular Proteomics, 2019, 18, 669-685.	2.5	20

#	Article	IF	Citations
91	Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4. Frontiers in Immunology, 2016, 7, 423.	2.2	19
92	A Specific Reduction in AÎ 2 1â 3 42 vs. a Universal Loss of AÎ 2 Peptides in CSF Differentiates Alzheimer's Disease From Meningitis and Multiple Sclerosis. Frontiers in Aging Neuroscience, 2018, 10, 152.	1.7	18
93	Editorial: Lectins and Their Ligands in Shaping Immune Responses. Frontiers in Immunology, 2019, 10, 2379.	2.2	18
94	Two Cases of Severe Tick-Borne Encephalitis in Rituximab-Treated Patients in Germany: Implications for Diagnosis and Prevention. Open Forum Infectious Diseases, 2017, 4, ofx204.	0.4	17
95	Mycobacteriaâ€induced granuloma necrosis depends on IRFâ€1. Journal of Cellular and Molecular Medicine, 2009, 13, 2069-2082.	1.6	16
96	Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool. Frontiers in Molecular Neuroscience, 2017, 10, 372.	1.4	16
97	Analysis of Corynebacterium diphtheriae macrophage interaction: Dispensability of corynomycolic acids for inhibition of phagolysosome maturation and identification of a new gene involved in synthesis of the corynomycolic acid layer. PLoS ONE, 2017, 12, e0180105.	1.1	16
98	Focal encephalitis in the Lewis rat induced by intracerebral enterotoxin superantigen and amplified by activated intravenous splenocytes. Neuroscience Letters, 2002, 324, 93-96.	1.0	14
99	Over expression of IL-10 by macrophages overcomes resistance to murine filariasis. Experimental Parasitology, 2012, 132, 90-96.	0.5	14
100	Review: Impact of Helminth Infection on Antimycobacterial Immunityâ€"A Focus on the Macrophage. Frontiers in Immunology, 2017, 8, 1864.	2.2	14
101	Cutting Edge: TNF Is Essential for Mycobacteria-Induced MINCLE Expression, Macrophage Activation, and Th17 Adjuvanticity. Journal of Immunology, 2020, 205, 323-328.	0.4	13
102	Induction of iNOS by <i>Chlamydophila pneumoniae</i> requires MyD88-dependent activation of JNK. Journal of Leukocyte Biology, 2008, 84, 1585-1593.	1.5	12
103	Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis. Frontiers in Immunology, 2017, 8, 1537.	2.2	12
104	Fatal Mycotic Aneurysm of the Basilar Artery Caused by Aspergillus fumigatus in a Patient with Pituitary Adenoma and Meningitis. Frontiers in Medicine, 2017, 4, 113.	1.2	12
105	Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function. International Journal of Molecular Sciences, 2019, 20, 4372.	1.8	12
106	MyD88 Is Required for Efficient Control of Coxiella burnetii Infection and Dissemination. Frontiers in Immunology, 2019, 10, 165.	2.2	12
107	Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-Î ³ towards Enhanced Inflammation yet Impaired Antigen Presentation and Expression of GBP1. Journal of Immunology, 2020, 205, 1580-1592.	0.4	10
108	Of mice and men: Interaction of <i>Corynebacterium diphtheriae</i> strains with murine and human phagocytes. Virulence, 2019, 10, 414-428.	1.8	9

#	Article	IF	CITATIONS
109	Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-Î ² Production. Journal of Immunology, 2015, 195, 1753-1762.	0.4	8
110	CD4+ T Cells Induced by Tuberculosis Subunit Vaccine H1 Can Improve the HIV-1 Env Humoral Response by Intrastructural Help. Vaccines, 2020, 8, 604.	2.1	8
111	Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. European Journal of Immunology, 1999, 29, 3496-3506.	1.6	8
112	A Severe Case of Tuberculosis Radiologically and Endoscopically Mimicking Colorectal Cancer with Peritoneal Carcinomatosis. Case Reports in Gastrointestinal Medicine, 2017, 2017, 1-4.	0.2	7
113	Using multimodal information for the segmentation of fluorescent micrographs with application to Virology and microbiology., 2011, 2011, 6487-90.		6
114	Enhancing automated micrographâ€based evaluation of LPSâ€stimulated macrophage spreading. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 409-418.	1.1	4
115	Pleural Resident Macrophages and Pleural IRA B Cells Promote Efficient Immunity Against Pneumonia by Inducing Early Pleural Space Inflammation. Frontiers in Immunology, 2022, 13, 821480.	2.2	4
116	Monocytes Elicit a Neutrophil-Independent Th1/Th17 Response Upon Immunization With a Mincle-Dependent Glycolipid Adjuvant. Frontiers in Immunology, 2022, 13, 880474.	2.2	3
117	Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115(3):e10–e19 Blood, 2010, 116, 857-857.	0.6	2
118	The role of lipids in host microbe interactions. Frontiers in Bioscience - Landmark, 2017, 22, 1581-1598.	3.0	2
119	Phosphatidylinositol 3-Kinase (PI3K) Orchestrates Aspergillus fumigatus-Induced Eosinophil Activation Independently of Canonical Toll-Like Receptor (TLR)/C-Type-Lectin Receptor (CLR) Signaling. MBio, 2022, 13, .	1.8	2
120	Comparison of Methods for Splitting of Touching and Overlapping Macrophages in Fluorescent Micrographs. Lecture Notes in Computer Science, 2012, , 456-464.	1.0	1
121	[P4–441]: ALZHEIMER's AMYLOIDâ€Î² PEPTIDES SUPPORT THE INNATE IMMUNE DEFENSE. Alzheimer's and Dementia, 2017, 13, P1501.	0.4	0
122	DGCR8 deficiency impairs macrophage growth and unleashes the interferon response to mycobacteria. Life Science Alliance, 2021, 4, e202000810.	1.3	0