Sarindr Bhumiratana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7421133/publications.pdf

Version: 2024-02-01

20 papers

2,039 citations

623188 14 h-index 887659 17 g-index

20 all docs

20 docs citations

times ranked

20

2875 citing authors

#	Article	IF	CITATIONS
1	Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 468-478.	1.3	6
2	Tissue-engineered autologous grafts for facial bone reconstruction. Science Translational Medicine, 2016, 8, 343ra83.	5.8	187
3	Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells. Methods, 2015, 84, 109-114.	1.9	15
4	Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6940-6945.	3.3	166
5	Principles of Bioreactor Design for Tissue Engineering. , 2014, , 261-278.		2
6	Bioreactors for Tissue Engineering. , 2013, , 1178-1194.		2
7	Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 2188-2200.	1.6	20
8	Sequential Application of Steady and Pulsatile Medium Perfusion Enhanced the Formation of Engineered Bone. Tissue Engineering - Part A, 2013, 19, 1244-1254.	1.6	13
9	Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts. Methods in Molecular Biology, 2013, 1202, 57-78.	0.4	17
10	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	3.3	153
11	Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Translational Medicine, 2012, 1, 64-69.	1.6	77
12	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	4.1	210
13	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	5.7	88
14	Bioreactor Cultivation of Functional Bone Grafts. Methods in Molecular Biology, 2011, 698, 231-241.	0.4	21
15	Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 2011, 32, 2812-2820.	5.7	238
16	Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 2011, 108, 1159-1170.	1.7	129
17	Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Acta Biomaterialia, 2011, 7, 144-151.	4.1	112
18	Engineering Functional Bone Grafts., 2011,, 221-235.		3

#	Article	lF	CITATIONS
19	Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3299-3304.	3.3	367
20	Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone. Tissue Engineering - Part A, 2008, 14, 1809-1820.	1.6	213