Manuele Santoprete

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7420870/publications.pdf
Version: 2024-02-01

On the Uniqueness of Co-circular Four Body Central Configurations. Archive for Rational Mechanics
and Analysis, 2021, 240, 971-985.

2 On the uniqueness of trapezoidal four-body central configurations. Nonlinearity, 2021, 34, 424-437.
1.4

Bifurcation of Relative Equilibria for Vortices and General Homogeneous Potentials. Qualitative Theory of Dynamical Systems, 2020, 19, 1.

Countering violent extremism: A mathematical model. Applied Mathematics and Computation, 2019, 358, 314-329.

Planarity conditions and four-body central configurations equations with angles as coordinates. Journal of Geometry and Physics, 2019, 140, 74-84.

Global stability in a mathematical model of de-radicalization. Physica A: Statistical Mechanics and Its
Applications, 2018, 509, 151-161.

Four-body central configurations with one pair of opposite sides parallel. Journal of Mathematical
Analysis and Applications, 2018, 464, 421-434.
1.0

11

8 Suslov Problem with the Clebschâ€"Tisserand Potential. Regular and Chaotic Dynamics, 2018, 23, 193-211

9 A bare-bones mathematical model of radicalization. Journal of Dynamics and Games, 2018, 5, 243-264.
1.0

10

10 Bifurcations of Central Configurations in the Four-Body Problem with Some Equal Masses. SIAM Journal on Applied Dynamical Systems, 2016, 15, 440-458.
11. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7, 483-515.
$0.8 \quad 2$

Motion in a Symmetric Potential on the Hyperbolic Plane. Canadian Journal of Mathematics, 2015, 67, 450-480.

Regularization of the Kepler Problem on the Three-sphere. Canadian Journal of Mathematics, 2014, 66, 760-782.
0.63

Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities. Journal of Nonlinear Science, 2014, 24, 39-92.

15 On the topology of the double spherical pendulum. Regular and Chaotic Dynamics, 2012, 17, 36-53.
0.8

The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria. Journal of Nonlinear Science, 2012, 22, 247-266.
2.1

17 The n-Body Problem in Spaces of Constant Curvature. Part II: Singularities. Journal of Nonlinear
Science, 2012, 22, 267-275.
2.1

50
19 Central configurations of the five-body problem with equal masses. Celestial Mechanics and
Dynamical Astronomy, 2009, 104, 369-381.

Smoothed dynamics in the central field problem. Nonlinear Analysis: Real World Applications, 2009, 10, 1870-1881.

Block regularization of the Kepler problem on surfaces of revolution with positive constant curvature. Journal of Differential Equations, 2009, 247, 1043-1063.

Gravitational and harmonic oscillator potentials on surfaces of revolution. Journal of Mathematical Physics, 2008, 49, 042903.

23 Saariâ $€^{T M}$ S Conjecture in Celestial Mechanics. AIP Conference Proceedings, 2008, , .
$0.4 \quad 0$

Saari's homographic conjecture of the three-body problem. Transactions of the American
Mathematical Society, 2008, 360, 6447-6473.
0.9

Convex Four-Body Central Configurations with Some Equal Masses. Archive for Rational Mechanics
and Analysis, 2007, 185, 481-494.

Seven-body central configurations: a family of central configurations in the spatial seven-body problem. Celestial Mechanics and Dynamical Astronomy, 2007, 99, 293-305.

Central configurations and total collisions for quasihomogeneous -body problems. Nonlinear
Analysis: Theory, Methods \& Applications, 2006, 65, 1425-1439.

Linear Stability of the Lagrangian Triangle Solutions for Quasihomogeneous Potentials. Celestial
Mechanics and Dynamical Astronomy, 2006, 94, 17-35.

29 Rosette Central Configurations, Degenerate Central Configurations and Bifurcations. Celestial

30 The Kepler problem with anisotropic perturbations. Journal of Mathematical Physics, 2005, 46, 072701.
1.1

16
$31 \quad$ A Counterexample to a Generalized Saari's Conjecture with a Continuum of Central Configurations.
Celestial Mechanics and Dynamical Astronomy, 2004, 89, 357-364.

On the global dynamics of the anisotropic Manev problem. Physica D: Nonlinear Phenomena, 2004, 194,
75-94.
 Society, 2004, 357, 4215-4223.

Symmetric periodic solutions of the anisotropic Manev problem. Journal of Mathematical Physics,
2002, 43, 3207-3219.

Chaos in Black Holes Surrounded by Electromagnetic Fields. General Relativity and Gravitation, 2002,
34, 1107-1119.
2.0

11
1.1

Nonintegrability and chaos in the anisotropic Manev problem. Physica D: Nonlinear Phenomena, 2001,
156, 39-52.

