Eizo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420769/publications.pdf

Version: 2024-02-01

758635 552369 33 673 12 26 citations h-index g-index papers 35 35 35 504 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Input-output organization of the rat vibrissal motor cortex. Experimental Brain Research, 1994, 99, 223-32.	0.7	154
2	Subcortical connections of frontal â€~oculomotor' areas in the cat. Brain Research, 1989, 502, 75-87.	1.1	108
3	Gamma-band oscillations in the "barrel cortex―precede rat's exploratory whisking. Neuroscience, 1999, 88, 667-671.	1.1	63
4	Tactile experience determines the organization of movement representations in rat motor cortex. NeuroReport, 1996, 7, 2373-2378.	0.6	48
5	The superior colliculus relays signals descending from the vibrissal motor cortex to the facial nerve nucleus in the rat. Neuroscience Letters, 1995, 195, 69-71.	1.0	44
6	Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. IEEE Transactions on Industrial Electronics, 2014, 61, 1044-1052.	5.2	37
7	Minimal stimulus parameters and the effects of hyperpolarization on the induction of long-term potentiation in the cat motor cortex. Experimental Brain Research, 1991, 87, 295-302.	0.7	34
8	Quadrupedal locomotor movements in monkeys (M. fuscata) on a treadmill. NeuroReport, 1996, 7, 2277-2286.	0.6	24
9	Eye movements following cortical stimulation in the ventral bank of the anterior ectosylvian sulcus of the cat. Neuroscience Research, 1989, 7, 159-163.	1.0	23
10	Corticocortical connections of frontal oculomotor areas in the cat. Brain Research, 1987, 414, 91-98.	1.1	17
11	Subcortical connections of an †oculomotor†region in the ventral bank of the anterior ectosylvian sulcus in the cat. Neuroscience Research, 1989, 7, 249-256.	1.0	17
12	Signal-Dependent Noise Induces Muscle Co-Contraction to Achieve Required Movement Accuracy: A Simulation Study with an Optimal Control. Current Bioinformatics, 2013, 8, 16-24.	0.7	16
13	Basic Neurophysiology of Primate Locomotion. Folia Primatologica, 1996, 66, 192-203.	0.3	12
14	The Wakayama Epileptic Rat(WER), a New Mutant Exhibiting Tonic-clonic Seizures and Absence-like Seizures Experimental Animals, 2003, 52, 53-62.	0.7	11
15	Projections from eye movement-evoking cerebral cortices to the striatum and claustrum in the cat. Neuroscience Research, 1990, 8, 272-280.	1.0	10
16	The 'functional connection' of neurones in relation to behavioural states in rats. NeuroReport, 1996, 7, 2407.	0.6	9
17	DEVISING A ROBOTIC ARM MANIPULANDUM FOR NORMAL AND ALTERED REACHING MOVEMENTS TO INVESTIGATE BRAIN MECHANISMS OF MOTOR CONTROL. Instrumentation Science and Technology, 2013, 41, 251-273.	0.9	8
18	State Variables of the Arm May Be Encoded by Single Neuron Activity in the Monkey Motor Cortex. IEEE Transactions on Industrial Electronics, 2016, 63, 1943-1952.	5.2	6

#	Article	IF	CITATIONS
19	Types of monocular eye movements studied by intracortical microstimulation in the cat's coronal sulcus The Japanese Journal of Physiology, 1987, 37, 741-747.	0.9	6
20	Dorsal column input to thalamic VL neurons: an intracellular study in the cat. Experimental Brain Research, 1992, 88, 551-9.	0.7	5
21	Nucleus Z: a somatosensory relay to motor thalamus. Journal of Neurophysiology, 1993, 69, 1607-1620.	0.9	5
22	Cocontraction of Pairs of Muscles around Joints May Improve an Accuracy of a Reaching Movement: a Numerical Simulation Study. , 2011, , .		3
23	Signal-Dependent Noise Induces Muscle Co-Contraction to Achieve Required Movement Accuracy: A Simulation Study with an Optimal Control. Current Bioinformatics, 2013, 8, 16-24.	0.7	3
24	Understanding Motion Control of the Body Using Optimal Feedback Control. IEEJ Journal of Industry Applications, 2016, 5, 296-302.	0.9	3
25	A numerical simulation using optimal control can estimate stiffness profiles of a monkey arm during reaching movements., 2012,,.		2
26	Monocular eye movement in the cat: Its corticotectal pathway The Japanese Journal of Physiology, 1988, 38, 569-575.	0.9	2
27	Suggestive evidence for a forward model of the arm in the monkey motor cortex. , 2014, , .		1
28	Functional Roles of Saccades for a Hand Movement. Applied Sciences (Switzerland), 2020, 10, 3066.	1.3	1
29	Estimation of Visual Feedback Contribution to Limb Stiffness in Visuomotor Control. Lecture Notes in Computer Science, 2012, , 61-72.	1.0	1
30	Evaluation of the functional connectivity in the nervous system using time dependent scatter diagrams. Brain Research, 1994, 660, 209-215.	1.1	0
31	Feedback gains are time-scheduled in monkey reaching movements. Neuroscience Research, 2010, 68, e149.	1.0	0
32	Which of the variables does velocity correlated neuronal activity of M1 represents: A desired trajectory, predicted state, estimated state, or viscosity component of a motor command?. Neuroscience Research, 2011, 71, e250.	1.0	0
33	Visual feedback effects as a coordination of joint stiffness in monkey's arm reaching. Neuroscience Research, 2011, 71, e250.	1.0	0