
Ken-ichi Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420532/publications.pdf Version: 2024-02-01

KEN-ICHI SHIMIZU

#	Article	IF	CITATIONS
1	Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catalysis Communications, 2009, 10, 1849-1853.	1.6	318
2	Machine Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catalysis, 2020, 10, 2260-2297.	5.5	309
3	Comprehensive IR study on acid/base properties of metal oxides. Applied Catalysis A: General, 2012, 433-434, 135-145.	2.2	292
4	Effects of BrÃ,nsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chemistry, 2009, 11, 1627.	4.6	288
5	Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: structure of active sites and reaction mechanism. Applied Catalysis B: Environmental, 2001, 30, 151-162.	10.8	287
6	Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catalysis Science and Technology, 2015, 5, 1412-1427.	2.1	220
7	Oxidantâ€Free Dehydrogenation of Alcohols Heterogeneously Catalyzed by Cooperation of Silver Clusters and Acid–Base Sites on Alumina. Chemistry - A European Journal, 2009, 15, 2341-2351.	1.7	218
8	Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts: Mechanistic Reasons of Size- and Support-Dependent Activity and Selectivity. Journal of Physical Chemistry C, 2009, 113, 17803-17810.	1.5	202
9	Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. Journal of Catalysis, 2010, 270, 86-94.	3.1	200
10	Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3. Applied Catalysis B: Environmental, 2003, 42, 179-186.	10.8	193
11	Structural investigations of functionalized mesoporous silica-supported palladium catalyst for Heck and Suzuki coupling reactions. Journal of Catalysis, 2004, 228, 141-151.	3.1	192
12	Direct Dehydrogenative Amide Synthesis from Alcohols and Amines Catalyzed by γâ€Alumina Supported Silver Cluster. Chemistry - A European Journal, 2009, 15, 9977-9980.	1.7	190
13	Catalytic performance of Ag–Al2O3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons. Applied Catalysis B: Environmental, 2000, 25, 239-247.	10.8	189
14	Heterogeneous Ni Catalyst for Direct Synthesis of Primary Amines from Alcohols and Ammonia. ACS Catalysis, 2013, 3, 112-117.	5.5	185
15	Heterogeneous Ni Catalysts for N-Alkylation of Amines with Alcohols. ACS Catalysis, 2013, 3, 998-1005.	5.5	179
16	Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nature Communications, 2020, 11, 2838.	5.8	169
17	Direct CC Cross oupling of Secondary and Primary Alcohols Catalyzed by a γâ€Aluminaâ€&upported Silver Subnanocluster. Angewandte Chemie - International Edition, 2009, 48, 3982-3986.	7.2	163
18	Design of Interfacial Sites between Cu and Amorphous ZrO ₂ Dedicated to CO ₂ -to-Methanol Hydrogenation. ACS Catalysis, 2018, 8, 7809-7819.	5.5	159

#	Article	IF	CITATIONS
19	Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. Journal of Catalysis, 2004, 227, 367-374.	3.1	158
20	Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoO _x co-loaded carbon catalysts. Green Chemistry, 2014, 16, 3899-3903.	4.6	154
21	Selective catalytic reduction of NO over supported silver catalysts—practical and mechanistic aspects. Physical Chemistry Chemical Physics, 2006, 8, 2677-2695.	1.3	151
22	Transamidation of amides with amines under solvent-free conditions using a CeO2 catalyst. Green Chemistry, 2012, 14, 717.	4.6	147
23	Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Applied Catalysis B: Environmental, 2010, 96, 169-175.	10.8	146
24	Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts. Applied Catalysis B: Environmental, 1998, 16, 319-326.	10.8	143
25	Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catalysis, 2014, 4, 3045-3050.	5.5	142
26	Role of Acetate and Nitrates in the Selective Catalytic Reduction of NO by Propene over Alumina Catalyst as Investigated by FTIR. Journal of Physical Chemistry B, 1999, 103, 5240-5245.	1.2	141
27	Toward Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys. Journal of Physical Chemistry C, 2018, 122, 8315-8326.	1.5	140
28	Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy and Environmental Science, 2011, 4, 3140.	15.6	134
29	γâ€Aluminaâ€Supported Silver Cluster for <i>N</i> â€Benzylation of Anilines with Alcohols. ChemCatChem, 2009, 1, 497-503.	1.8	132
30	Promotion effect of hydrogen on surface steps in SCR of NO by propane over alumina-based silver catalyst as examined by transient FT-IR. Physical Chemistry Chemical Physics, 2003, 5, 2154.	1.3	129
31	Deconvolution Analysis of Ga K-Edge XANES for Quantification of Gallium Coordinations in Oxide Environments. Journal of Physical Chemistry B, 1998, 102, 10190-10195.	1.2	128
32	Size- and support-dependent Pt nanocluster catalysis for oxidant-free dehydrogenation of alcohols. Journal of Catalysis, 2013, 304, 63-71.	3.1	125
33	Photocatalytic Water Splitting on Ni-Intercalated Ruddlesdenâ^'Popper Tantalate H2La2/3Ta2O7. Chemistry of Materials, 2005, 17, 5161-5166.	3.2	123
34	Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays. Applied Catalysis A: General, 2002, 225, 185-191.	2.2	121
35	Selective hydrogenation of levulinic acid to valeric acid and valeric biofuels by a Pt/HMFI catalyst. Catalysis Science and Technology, 2014, 4, 3227-3234.	2.1	115
36	Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry, 2018, 20, 2933-2952.	4.6	114

#	Article	IF	CITATIONS
37	Machine-learning prediction of the d-band center for metals and bimetals. RSC Advances, 2016, 6, 52587-52595.	1.7	113
38	Efficient and Substrateâ€Specific Hydration of Nitriles to Amides in Water by Using a CeO ₂ Catalyst. Chemistry - A European Journal, 2011, 17, 11428-11431.	1.7	112
39	Hydrodeoxygenation of fatty acids and triglycerides by Pt-loaded Nb ₂ O ₅ catalysts. Catalysis Science and Technology, 2014, 4, 3705-3712.	2.1	109
40	Intermediates in the Selective Reduction of NO by Propene over Cuâ^'Al2O3 Catalysts:  Transient inâ^'Situ FTIR Study. Journal of Physical Chemistry B, 2000, 104, 2885-2893.	1.2	106
41	A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction. Chemical Science, 2019, 10, 8292-8298.	3.7	105
42	Photocatalytic water splitting on hydrated layered perovskite tantalate A2SrTa2O7•nH2O (A = H, K, ar	ıd) _{1.3} ETQ	q0.0.0 rgBT /
43	Reductive Activation of O2with H2-Reduced Silver Clusters as a Key Step in the H2-Promoted Selective Catalytic Reduction of NO with C3H8over Ag/Al2O3. Journal of Physical Chemistry C, 2007, 111, 950-959.	1.5	104
44	Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 511-518.	10.8	104
45	Acceptor-free dehydrogenation of secondary alcohols by heterogeneous cooperative catalysis between Ni nanoparticles and acid–base sites of alumina supports. Journal of Catalysis, 2013, 300, 242-250.	3.1	104
46	Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces. Journal of Physical Chemistry C, 2018, 122, 29435-29444.	1.5	103
47	Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. Journal of Physical Chemistry B, 2004, 108, 18327-18335.	1.2	96
48	Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)–ferrite redox system. Solar Energy, 2002, 73, 363-374.	2.9	94
49	Alumina-Supported Gallium Oxide Catalysts for NO Selective Reduction:  Influence of the Local Structure of Surface Gallium Oxide Species on the Catalytic Activity. Journal of Physical Chemistry B, 1999, 103, 1542-1549.	1.2	92
50	Acidic properties of sulfonic acid-functionalized FSM-16 mesoporous silica and its catalytic efficiency for acetalization of carbonyl compounds. Journal of Catalysis, 2005, 231, 131-138.	3.1	92
51	Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catalysis Science and Technology, 2011, 1, 331.	2.1	92
52	Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nature Communications, 2021, 12, 557.	5.8	92
53	Ligand field effect on the chemical shift in XANES spectra of Cu(II) compounds. Physical Chemistry Chemical Physics, 2001, 3, 862-866.	1.3	88
54	Isolated Indium Hydrides in CHA Zeolites: Speciation and Catalysis for Nonoxidative Dehydrogenation of Ethane. Journal of the American Chemical Society, 2020, 142, 4820-4832.	6.6	86

#	Article	IF	CITATIONS
55	<i>C</i> -Methylation of Alcohols, Ketones, and Indoles with Methanol Using Heterogeneous Platinum Catalysts. ACS Catalysis, 2018, 8, 3091-3103.	5.5	85
56	In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts. Progress in Energy and Combustion Science, 2003, 29, 71-84.	15.8	83
57	Bulk Vanadium Oxide versus Conventional V ₂ O ₅ /TiO ₂ : NH ₃ –SCR Catalysts Working at a Low Temperature Below 150 °C. ACS Catalysis, 2019, 9, 9327-9331.	5.5	82
58	Low-Temperature Hydrogenation of CO ₂ to Methanol over Heterogeneous TiO ₂ -Supported Re Catalysts. ACS Catalysis, 2019, 9, 3685-3693.	5.5	82
59	Transition metal-aluminate catalysts for NO reduction by C3H6. Applied Catalysis B: Environmental, 1998, 18, 163-170.	10.8	81
60	Pd–sepiolite catalyst for Suzuki coupling reaction in water: Structural and catalytic investigations. Journal of Catalysis, 2004, 227, 202-209.	3.1	80
61	SO3H-functionalized silica for acetalization of carbonyl compounds with methanol and tetrahydropyranylation of alcohols. Tetrahedron Letters, 2004, 45, 5135-5138.	0.7	80
62	Characterization and Activity Analysis of Catalytic Water Oxidation Induced by Hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+and Clay Compounds. Journal of Physical Chemistry B, 2006, 110, 23107-23114.	1.2	80
63	Selective Exchange and Fixation of Strontium Ions with Ultrafine Na-4-mica. Langmuir, 2001, 17, 4881-4886.	1.6	79
64	Heterogeneous cobalt catalysts for the acceptorless dehydrogenation of alcohols. Green Chemistry, 2013, 15, 418-424.	4.6	78
65	Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt catalysts. ChemCatChem, 2015, 7, 921-924.	1.8	77
66	Rheniumâ€Loaded TiO ₂ : A Highly Versatile and Chemoselective Catalyst for the Hydrogenation of Carboxylic Acid Derivatives and the Nâ€Methylation of Amines Using H ₂ and CO ₂ . Chemistry - A European Journal, 2017, 23, 14848-14859.	1.7	76
67	Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nature Catalysis, 2022, 5, 55-65.	16.1	76
68	Fluidized Bed Coal Gasification with CO2under Direct Irradiation with Concentrated Visible Light. Energy & Fuels, 2002, 16, 1264-1270.	2.5	74
69	CeO2-catalyzed nitrile hydration to amide: reaction mechanism and active sites. Catalysis Science and Technology, 2013, 3, 1386.	2.1	73
70	Spectroscopic characterisation of Cu–Al2O3 catalysts for selective catalytic reduction of NO with propene. Physical Chemistry Chemical Physics, 2000, 2, 2435-2439.	1.3	72
71	Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors and Actuators B: Chemical, 2009, 141, 410-416.	4.0	71
72	Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. Journal of Molecular Catalysis A, 2008, 284, 89-96.	4.8	70

#	Article	IF	CITATIONS
73	Volcano-Curves for Dehydrogenation of 2-Propanol and Hydrogenation of Nitrobenzene by SiO ₂ -Supported Metal Nanoparticles Catalysts As Described in Terms of a d-Band Model. ACS Catalysis, 2012, 2, 1904-1909.	5.5	70
74	Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chemistry - A European Journal, 2014, 20, 6264-6267.	1.7	70
75	Direct synthesis of quinazolinones by acceptorless dehydrogenative coupling of o-aminobenzamide and alcohols by heterogeneous Pt catalysts. Catalysis Science and Technology, 2014, 4, 1716-1719.	2.1	70
76	Hydrogen assisted urea-SCR and NH3-SCR with silver–alumina as highly active and SO2-tolerant de-NO catalysis. Applied Catalysis B: Environmental, 2007, 77, 202-205.	10.8	68
77	Mechanistic causes of the hydrocarbon effect on the activity of Ag–Al2O3 catalyst for the selective reduction of NO. Physical Chemistry Chemical Physics, 2001, 3, 880-884.	1.3	67
78	Formation and Reactions of NH ₄ NO ₃ during Transient and Steady-State NH ₃ -SCR of NO _{<i>x</i>} over H-AFX Zeolites: Spectroscopic and Theoretical Studies. ACS Catalysis, 2020, 10, 2334-2344.	5.5	67
79	Mechanism of NO Reduction by CH4 in the Presence of O2 over Pd–H–Mordenite. Journal of Catalysis, 2000, 195, 151-160.	3.1	66
80	Quantification of aluminium coordinations in alumina and silica–alumina by Al K-edge XANES. Physical Chemistry Chemical Physics, 2001, 3, 1925-1929.	1.3	66
81	Heterogeneous Pt and MoO _{<i>x</i>} Co-Loaded TiO ₂ Catalysts for Low-Temperature CO ₂ Hydrogenation To Form CH ₃ OH. ACS Catalysis, 2019, 9, 8187-8196.	5.5	66
82	<i>In Situ</i> Spectroscopic Studies on the Redox Cycle of NH ₃ â^'SCR over Cuâ^'CHA Zeolites. ChemCatChem, 2020, 12, 3050-3059.	1.8	64
83	Kinetic and in situ infrared studies on SCR of NO with propane by silver–alumina catalyst: Role of H2 on O2 activation and retardation of nitrate poisoning. Journal of Catalysis, 2006, 239, 402-409.	3.1	62
84	Suzuki cross-coupling reaction catalyzed by palladium-supported sepiolite. Tetrahedron Letters, 2002, 43, 5653-5655.	0.7	61
85	Oxidation of CO over Ru/Ceria prepared by self-dispersion of Ru metal powder into nano-sized particle. Catalysis Today, 2013, 201, 62-67.	2.2	61
86	N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catalysis Today, 2014, 232, 134-138.	2.2	61
87	Silver cluster-promoted heterogeneous copper catalyst for N-alkylation of amines with alcohols. RSC Advances, 2011, 1, 1310.	1.7	60
88	Acceptorless Dehydrogenative Synthesis of Pyrimidines from Alcohols and Amidines Catalyzed by Supported Platinum Nanoparticles. ACS Catalysis, 2018, 8, 11330-11341.	5.5	58
89	Formation and Redispersion of Silver Clusters in Ag-MFI Zeolite as Investigated by Time-Resolved QXAFS and UVâ^'Vis. Journal of Physical Chemistry C, 2007, 111, 1683-1688.	1.5	57
90	Surface Oxygen Atom as a Cooperative Ligand in Pd Nanoparticle Catalysis for Selective Hydration of Nitriles to Amides in Water: Experimental and Theoretical Studies. ACS Catalysis, 2012, 2, 2467-2474.	5.5	56

#	Article	IF	CITATIONS
91	Acceptorless dehydrogenative synthesis of benzothiazoles and benzimidazoles from alcohols or aldehydes by heterogeneous Pt catalysts under neutral conditions. Tetrahedron Letters, 2015, 56, 4885-4888.	0.7	56
92	Seasonal change of persistent organic pollutant concentrations in air at Niigata area, Japan. Chemosphere, 2003, 52, 683-694.	4.2	55
93	Polyvalent-metal salts of heteropolyacid as catalyst for Friedel-Crafts alkylation reactions. Applied Catalysis A: General, 2008, 349, 1-5.	2.2	55
94	Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles. Catalysis Today, 2011, 175, 93-99.	2.2	55
95	Surface Oxygenâ€Assisted Pd Nanoparticle Catalysis for Selective Oxidation of Silanes to Silanols. Chemistry - A European Journal, 2012, 18, 2226-2229.	1.7	54
96	Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data. ChemCatChem, 2019, 11, 4537-4547.	1.8	54
97	Hydrodeoxygenation of Fatty Acids, Triglycerides, and Ketones to Liquid Alkanes by a Pt–MoO _{<i>x</i>} /TiO ₂ Catalyst. ChemCatChem, 2017, 9, 2822-2827.	1.8	53
98	Lewis Acid Catalysis of Nb ₂ O ₅ for Reactions of Carboxylic Acid Derivatives in the Presence of Basic Inhibitors. ChemCatChem, 2019, 11, 383-396.	1.8	53
99	Catalytically Activated Metal Foam Absorber for Light-to-Chemical Energy Conversion via Solar Reforming of Methane. Energy & Fuels, 2003, 17, 13-17.	2.5	52
100	General and Selective Câ€3 Alkylation of Indoles with Primary Alcohols by a Reusable Pt Nanocluster Catalyst. Chemistry - A European Journal, 2013, 19, 14416-14419.	1.7	52
101	Polyvalent-metal salts of heteropolyacid as efficient heterogeneous catalysts for Friedel–Crafts acylation of arenes with carboxylic acids. Catalysis Communications, 2008, 9, 980-983.	1.6	51
102	Self-aldol condensation of unmodified aldehydes catalysed by secondary-amine immobilised in FSM-16 silica. Tetrahedron Letters, 2002, 43, 9073-9075.	0.7	49
103	Influence of hydrocarbon structure on selective catalytic reduction of NO by hydrocarbons over Cu-Al2O3. Applied Catalysis B: Environmental, 2002, 37, 197-204.	10.8	48
104	Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sensors and Actuators B: Chemical, 2008, 130, 707-712.	4.0	48
105	Alkylation of 2-methylquinoline with alcohols under additive-free conditions by Al2O3-supported Pt catalyst. Tetrahedron Letters, 2013, 54, 6490-6493.	0.7	48
106	N-Methylation of amines and nitroarenes with methanol using heterogeneous platinum catalysts. Journal of Catalysis, 2019, 371, 47-56.	3.1	48
107	Effects of hydrogen and oxygenated hydrocarbons on the activity and SO2-tolerance of Ag/Al2O3 for selective reduction of NO. Applied Catalysis B: Environmental, 2007, 71, 80-84.	10.8	46
108	CeO2-catalysed one-pot selective synthesis of esters from nitriles and alcohols. Green Chemistry, 2012, 14, 984.	4.6	46

Ken-ICHI SHIMIZU

#	Article	IF	CITATIONS
109	C-3 alkylation of oxindole with alcohols by Pt/CeO ₂ catalyst in additive-free conditions. Catalysis Science and Technology, 2014, 4, 1064-1069.	2.1	46
110	Promotional Effect of La in the Three-Way Catalysis of La-Loaded Al ₂ O ₃ -Supported Pd Catalysts (Pd/La/Al ₂ O ₃). ACS Catalysis, 2020, 10, 1010-1023.	5.5	46
111	Active, Selective, and Durable Catalyst for Alkane Dehydrogenation Based on a Well-Designed Trimetallic Alloy. ACS Catalysis, 2020, 10, 5163-5172.	5.5	46
112	Doubly Decorated Platinum–Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2021, 60, 19715-19719.	7.2	46
113	Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst. Energy, 2003, 28, 1055-1068.	4.5	45
114	Selective photo-oxidation of benzene over transition metal-exchanged BEA zeolite. Applied Catalysis A: General, 2004, 269, 75-80.	2.2	45
115	Mechanism of Low-Temperature CO Oxidation on Pt/Fe-Containing Alumina Catalysts Pretreated with Water. Journal of Physical Chemistry C, 2013, 117, 1268-1277.	1.5	45
116	TiO ₂ ‣upported Re as a General and Chemoselective Heterogeneous Catalyst for Hydrogenation of Carboxylic Acids to Alcohols. Chemistry - A European Journal, 2017, 23, 1001-1006.	1.7	45
117	CeO2-catalyzed Transformations of Nitriles and Amides. Chemistry Letters, 2012, 41, 1397-1405.	0.7	43
118	Oxygen reduction reaction over silver particles with various morphologies and surface chemical states. Journal of Power Sources, 2014, 245, 998-1004.	4.0	43
119	Amidation of Carboxylic Acids with Amines by Nb ₂ O ₅ as a Reusable Lewis Acid Catalyst. ChemCatChem, 2015, 7, 3555-3561.	1.8	43
120	Substrate-Specific Heterogeneous Catalysis of CeO ₂ by Entropic Effects via Multiple Interactions. ACS Catalysis, 2015, 5, 20-26.	5.5	43
121	Catalyst effectiveness factor of cobalt-exchanged mordenites for the selective catalytic reduction of NO with hydrocarbons. Applied Catalysis B: Environmental, 1998, 17, 107-113.	10.8	42
122	The average Pd oxidation state in Pd/SiO2 quantified by L3-edge XANES analysis and its effects on catalytic activity for CO oxidation. Catalysis Science and Technology, 2012, 2, 767.	2.1	42
123	Lewis Acid-Promoted Heterogeneous Platinum Catalysts for Hydrogenation of Amides to Amines. ChemistrySelect, 2016, 1, 736-740.	0.7	42
124	Sintering-resistant and self-regenerative properties of Ag/SnO2 catalyst for soot oxidation. Applied Catalysis B: Environmental, 2011, 108-109, 39-46.	10.8	41
125	Transfer hydrogenation of ketones by ceria-supported Ni catalysts. Green Chemistry, 2012, 14, 2983.	4.6	41
126	Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chemical Science, 2019, 10, 4148-4162.	3.7	41

#	Article	IF	CITATIONS
127	Redox tunable reversible molecular sieves: orthorhombic molybdenum vanadium oxide. Chemical Communications, 2011, 47, 10812.	2.2	40
128	Fe3+-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition. Tetrahedron Letters, 2014, 55, 1316-1319.	0.7	40
129	A Heterogeneous Niobium(V) Oxide Catalyst for the Direct Amidation of Esters. ChemCatChem, 2015, 7, 2705-2710.	1.8	40
130	Selective N-alkylation of indoles with primary alcohols using a Pt/HBEA catalyst. Green Chemistry, 2015, 17, 173-177.	4.6	40
131	Thermochemical methane reforming using WO3 as an oxidant below 1173 K by a solar furnace simulator. Solar Energy, 2001, 71, 315-324.	2.9	39
132	Hydrodeoxygenation of sulfoxides to sulfides by a Pt and MoO _x co-loaded TiO ₂ catalyst. Green Chemistry, 2016, 18, 2554-2560.	4.6	39
133	Acceptorless dehydrogenation of N -heterocycles by supported Pt catalysts. Catalysis Today, 2017, 281, 507-511.	2.2	38
134	Reaction Mechanism of H2-Promoted Selective Catalytic Reduction of NO with C3H8over Agâ^'MFI Zeolite. Journal of Physical Chemistry C, 2007, 111, 6481-6487.	1.5	37
135	Reaction Mechanism of H2-Promoted Selective Catalytic Reduction of NO with NH3over Ag/Al2O3. Journal of Physical Chemistry C, 2007, 111, 2259-2264.	1.5	37
136	Artificial model of photosynthetic oxygen evolving complex: Catalytic O2 production from water by di-μ-oxo manganese dimers supported by clay compounds. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 660-665.	0.5	37
137	Promotion effect of hydrogen on lean NOx reduction by hydrocarbons over Ag/Al2O3 catalyst. Chemical Engineering Science, 2007, 62, 5335-5337.	1.9	37
138	Solution Synthesis of <i>N</i> , <i>N</i> â€Dimethylformamideâ€Stabilized Ironâ€Oxide Nanoparticles as an Efficient and Recyclable Catalyst for Alkene Hydrosilylation. ChemCatChem, 2018, 10, 2378-2382.	1.8	37
139	Fe3+-exchanged fluorotetrasilicic mica as an active and reusable catalyst for Michael reaction. Tetrahedron Letters, 2003, 44, 7421-7424.	0.7	36
140	Effect of hydrogen addition on SO2 tolerance of silver–alumina for SCR of NO with propane. Journal of Catalysis, 2006, 239, 117-124.	3.1	36
141	Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au–titania boundaries: Effects of heat treatment conditions on catalytic activity. Journal of Catalysis, 2010, 270, 234-241.	3.1	36
142	Reactivity of surface nitrate species in the selective reduction of NO with propene over Na[ndash]H-mordenite as investigated by dynamic FTIR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 301-307.	1.7	35
143	Synthesis of NaÂ2Âmica from metakaolin and its cation exchange properties. Journal of Materials Chemistry, 2001, 11, 2072-2077.	6.7	35
144	Hydration of nitriles to amides in water by SiO2-supported Ag catalysts promoted by adsorbed oxygen atoms. Applied Catalysis A: General, 2012, 421-422, 114-120.	2.2	35

#	Article	IF	CITATIONS
145	Synthesis of 2,5-disubstituted pyrroles via dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols by supported platinum catalysts. Organic Chemistry Frontiers, 2016, 3, 846-851.	2.3	35
146	Ag Clusters as Active Species for HC-SCR Over Ag-Zeolites. Catalysis Surveys From Asia, 2005, 9, 75-85.	1.0	34
147	X-ray Photoelectron Spectroscopy of Fast-Frozen Hematite Colloids in Aqueous Solutions. 3. Stabilization of Ammonium Species by Surface (Hydr)oxo Groups. Journal of Physical Chemistry C, 2011, 115, 6796-6801.	1.5	34
148	Versatile and Sustainable Synthesis of Cyclic Imides from Dicarboxylic Acids and Amines by Nb ₂ O ₅ as a Baseâ€Tolerant Heterogeneous Lewis Acid Catalyst. Chemistry - A European Journal, 2014, 20, 14256-14260.	1.7	34
149	Transformation of Bulk Pd to Pd Cations in Small-Pore CHA Zeolites Facilitated by NO. Jacs Au, 2021, 1, 201-211.	3.6	34
150	Nickelâ€Based Highâ€Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
151	Selfâ€Regenerative Silver Nanocluster Catalyst for CO Oxidation. ChemCatChem, 2011, 3, 1290-1293.	1.8	33
152	Pt/Fe-containing alumina catalysts prepared and treated with water under moderate conditions exhibit low-temperature CO oxidation activity. Catalysis Communications, 2012, 17, 194-199.	1.6	33
153	Quantitative determination of average rhodium oxidation state by a simple XANES analysis. Applied Catalysis B: Environmental, 2012, 111-112, 509-514.	10.8	33
154	Self-coupling of secondary alcohols by Ni/CeO2 catalyst. Applied Catalysis A: General, 2013, 462-463, 137-142.	2.2	33
155	CeO2 as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions. Green Chemistry, 2013, 15, 1641.	4.6	33
156	Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts. Catalysis Science and Technology, 2014, 4, 3631-3635.	2.1	33
157	Analysis of Updated Literature Data up to 2019 on the Oxidative Coupling of Methane Using an Extrapolative Machineâ€Learning Method to Identify Novel Catalysts. ChemCatChem, 2021, 13, 3636-3655.	1.8	33
158	Analogous Mechanistic Features of NH ₃ -SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catalysis, 2021, 11, 11180-11192.	5.5	33
159	Title is missing!. Catalysis Surveys From Asia, 2001, 4, 115-123.	1.2	32
160	Degradation of hydrophobic organic pollutants by titania pillared fluorine mica as a substrate specific photocatalyst. Applied Catalysis B: Environmental, 2005, 55, 141-148.	10.8	32
161	Polytungstate clusters on zirconia as a sensing material for a selective ammonia gas sensor. Sensors and Actuators B: Chemical, 2007, 123, 757-762.	4.0	32
162	Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides. Sensors, 2011, 11, 2155-2165.	2.1	32

#	Article	IF	CITATIONS
163	Versatile and sustainable alcoholysis of amides by a reusable CeO ₂ catalyst. RSC Advances, 2014, 4, 35803-35807.	1.7	32
164	Al K-edge XANES study for the quantification of aluminium coordinations in alumina. Chemical Communications, 1999, , 1681-1682.	2.2	31
165	Dicopper(II)â^'Dioxygen Complexes in Y Zeolite for Selective Catalytic Oxidation of Cyclohexane under Photoirradiation. Journal of Physical Chemistry C, 2007, 111, 19043-19051.	1.5	31
166	Silver Cluster Catalysts for Green Organic Synthesis. Journal of the Japan Petroleum Institute, 2011, 54, 347-360.	0.4	31
167	Cooperative H ₂ Activation at Ag Cluster/Î,-Al ₂ O ₃ (110) Dual Perimeter Sites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 7996-8006.	1.5	31
168	CeO2-catalyzed one-pot selective synthesis of N-alkyl amides from nitriles, amines and water. Applied Catalysis A: General, 2012, 417-418, 6-12.	2.2	30
169	Acceptorless dehydrogenative synthesis of 2-substituted quinazolines from 2-aminobenzylamine with primary alcohols or aldehydes by heterogeneous Pt catalysts. RSC Advances, 2014, 4, 53374-53379.	1.7	30
170	Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts. Chemistry - A European Journal, 2016, 22, 6111-6119.	1.7	30
171	Catalyst design concept based on a variety of alloy materials: a personal account and relevant studies. Journal of Materials Chemistry A, 2020, 8, 15620-15645.	5.2	30
172	Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. Journal of the American Chemical Society, 2022, 144, 7693-7708.	6.6	30
173	Defective NiO as a Stabilizer for Au Single-Atom Catalysts. ACS Catalysis, 2022, 12, 6149-6158.	5.5	30
174	Nickel Catalyst Driven by Direct Light Irradiation for Solar CO2-Reforming of Methane. Energy & Fuels, 2002, 16, 1016-1023.	2.5	29
175	Ni/ceramic/molten-salt composite catalyst with high-temperature thermal storage for use in solar reforming processes. Energy, 2004, 29, 895-903.	4.5	29
176	Silicaâ€Supported Silver Nanoparticles with Surface Oxygen Species as a Reusable Catalyst for Alkylation of Arenes. ChemCatChem, 2010, 2, 84-91.	1.8	29
177	Selective cross-coupling of amines by alumina-supported palladium nanocluster catalysts. Green Chemistry, 2011, 13, 3096.	4.6	29
178	Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime by alumina-supported gold cluster catalysts. Journal of Molecular Catalysis A, 2011, 345, 54-59.	4.8	29
179	Influence of local structure on the catalytic activity of gallium oxide for the selective reduction of NO by CH4. Chemical Communications, 1996, , 1827.	2.2	28
180	Direct Synthesis of Lactams from Keto Acids, Nitriles, and H ₂ by Heterogeneous Pt Catalysts. ChemCatChem, 2018, 10, 789-795.	1.8	28

#	Article	IF	CITATIONS
181	Origin of Nb ₂ O ₅ Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2848-2857.	1.0	28
182	NH3-SCR by monolithic Cu-ZSM-5 and Cu-AFX catalysts: Kinetic modeling and engine bench tests. Catalysis Today, 2019, 332, 59-63.	2.2	28
183	Kinetics of Metal Oxide-Catalyzed CO2Gasification of Coal in a Fluidized-Bed Reactor for Solar Thermochemical Process. Energy & Fuels, 2001, 15, 1200-1206.	2.5	27
184	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	2.2	27
185	Catalytic direct 1,4-conjugate addition of aldehydes to vinylketones on secondary-amines immobilised in FSM-16 silica. Chemical Communications, 2002, , 1068-1069.	2.2	26
186	Alkaline earth cation exchange with novel Na-3-mica: kinetics and thermodynamic selectivities. Journal of Materials Chemistry, 2004, 14, 1031.	6.7	26
187	Mechanistic Study on Adsorptive Removal oftert-Butanethiol on Agâ^Y Zeolite under Ambient Conditions. Journal of Physical Chemistry B, 2006, 110, 22570-22576.	1.2	26
188	Ammonia Sensing Mechanism of Tungstated-Zirconia Thick Film Sensor. Journal of Physical Chemistry C, 2007, 111, 12080-12085.	1.5	26
189	Design of active centers for bisphenol-A synthesis by organic–inorganic dual modification of heteropolyacid. Applied Catalysis A: General, 2010, 380, 33-39.	2.2	26
190	Oxidantâ€free Dehydrogenation of Glycerol to Lactic Acid by Heterogeneous Platinum Catalysts. ChemCatChem, 2017, 9, 2816-2821.	1.8	26
191	High-silica Hβ zeolites for catalytic hydration of hydrophobic epoxides and alkynes in water. Journal of Catalysis, 2018, 368, 145-154.	3.1	26
192	Hydrogen sensor based on WO3 subnano-clusters and Pt co-loaded on ZrO2. Sensors and Actuators B: Chemical, 2008, 134, 618-624.	4.0	25
193	Direct Synthesis of N‣ubstituted Anilines from Nitroaromatics and Alcohols under H ₂ by Alumina‣upported Silver Cluster Catalysts. ChemCatChem, 2011, 3, 1755-1758.	1.8	25
194	Mechanistic study of the selective hydrogenation of carboxylic acid derivatives over supported rhenium catalysts. Catalysis Science and Technology, 2019, 9, 5413-5424.	2.1	25
195	Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis. ChemSusChem, 2019, 12, 3115-3125.	3.6	25
196	Mechanistic insights into the oxidation of copper(<scp>i</scp>) species during NH ₃ -SCR over Cu-CHA zeolites: a DFT study. Catalysis Science and Technology, 2020, 10, 3586-3593.	2.1	25
197	Catalytic Methylation of <i>m</i> -Xylene, Toluene, and Benzene Using CO ₂ and H ₂ over TiO ₂ -Supported Re and Zeolite Catalysts: Machine-Learning-Assisted Catalyst Optimization. ACS Catalysis, 2021, 11, 5829-5838.	5.5	25
198	Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. Journal of Catalysis, 2021, 400, 387-396.	3.1	25

#	Article	IF	CITATIONS
199	Self-Coupling of Secondary Alcohols and α-Alkylation of Methyl Ketones with Secondary Alcohols by Pt/CeO2 Catalyst. Topics in Catalysis, 2014, 57, 1042-1048.	1.3	24
200	Low temperature combustion over supported Pd catalysts – Strategy for catalyst design. Catalysis Today, 2015, 258, 83-89.	2.2	24
201	Supported rhenium nanoparticle catalysts for acceptorless dehydrogenation of alcohols: structure–activity relationship and mechanistic studies. Catalysis Science and Technology, 2016, 6, 5864-5870.	2.1	24
202	NH3-efficient ammoxidation of toluene by hydrothermally synthesized layered tungsten-vanadium complex metal oxides. Journal of Catalysis, 2016, 344, 346-353.	3.1	24
203	Catalytic Methylation of Aromatic Hydrocarbons using CO ₂ /H ₂ over Re/TiO ₂ and Hâ€MOR Catalysts. ChemCatChem, 2020, 12, 2215-2220.	1.8	24
204	Direct Synthesis of Cyclic Imides from Carboxylic Anhydrides and Amines by Nb ₂ O ₅ as a Waterâ€Tolerant Lewis Acid Catalyst. ChemCatChem, 2016, 8, 891-894.	1.8	23
205	Linear Correlations between Adsorption Energies and HOMO Levels for the Adsorption of Small Molecules on TiO ₂ Surfaces. Journal of Physical Chemistry C, 2019, 123, 20988-20997.	1.5	23
206	In Situ/Operando IR and Theoretical Studies on the Mechanism of NH ₃ –SCR of NO/NO ₂ over H–CHA Zeolites. Journal of Physical Chemistry C, 2021, 125, 13889-13899.	1.5	23
207	Evaluation of activated carbon fiber filter for sampling of organochlorine pesticides in environmental water samples. Chemosphere, 2003, 52, 825-833.	4.2	22
208	Pillaring of Ruddlesden–Popper perovskite tantalates, H2ATa2O7(A = Sr or La2/3), with n-alkylamines and oxidenanoparticles. Journal of Materials Chemistry, 2006, 16, 773-779.	6.7	22
209	Effect of supports on formation and reduction rate of stored nitrates on NSR catalysts as investigated by in situ FT/IR. Catalysis Today, 2008, 139, 24-28.	2.2	22
210	Heterogeneous catalysts for the cyclization of dicarboxylic acids to cyclic anhydrides as monomers for bioplastic production. Green Chemistry, 2017, 19, 3238-3242.	4.6	22
211	Micropore diffusivities of NO and NH3 in Cu-ZSM-5 and their effect on NH3-SCR. Catalysis Today, 2019, 332, 64-68.	2.2	22
212	Heterogeneous Additive-Free Hydroboration of Alkenes Using Cu–Ni/Al ₂ O ₃ : Concerted Catalysis Assisted by Acid–Base Properties and Alloying Effects. ACS Catalysis, 2019, 9, 5096-5103.	5.5	22
213	Changes in Surface Oxygen Vacancy Formation Energy at Metal/Oxide Perimeter Sites: A Systematic Study on Metal Nanoparticles Deposited on an In ₂ O ₃ (111) Support. Journal of Physical Chemistry C, 2020, 124, 27621-27630.	1.5	22
214	Frontier Molecular Orbital Based Analysis of Solid–Adsorbate Interactions over Group 13 Metal Oxide Surfaces. Journal of Physical Chemistry C, 2020, 124, 15355-15365.	1.5	22
215	Continuous CO ₂ Capture and Selective Hydrogenation to CO over Na-Promoted Pt Nanoparticles on Al ₂ O ₃ . ACS Catalysis, 2022, 12, 2639-2650.	5.5	22
216	O2-Bridged Multicopper(II) Complex in Zeolite for Catalytic Direct Photo-oxidation of Benzene to Diphenols. Journal of Physical Chemistry C, 2007, 111, 6440-6446.	1.5	21

#	Article	IF	CITATIONS
217	Effect of modified-alumina supports on propane–hydrogen-SCR over Ag/alumina. Catalysis Today, 2007, 126, 266-271.	2.2	21
218	Size- and support-dependent selective amine cross-coupling with platinum nanocluster catalysts. Catalysis Science and Technology, 2012, 2, 730.	2.1	21
219	Oxidation of Silanes to Silanols on Pd Nanoparticles: H ₂ Desorption Accelerated by Surface Oxygen Atom. Journal of Physical Chemistry C, 2013, 117, 22967-22973.	1.5	21
220	Esterification of Tertiary Amides by Alcohols Through Câ^'N Bond Cleavage over CeO ₂ . ChemCatChem, 2019, 11, 449-456.	1.8	21
221	Mechanism of NH ₃ –Selective Catalytic Reduction (SCR) of NO/NO ₂ (Fast SCR) over Cu-CHA Zeolites Studied by <i>In Situ/Operando</i> Infrared Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2021, 125, 21975-21987.	1.5	21
222	Sustainable Transesterification of \hat{l}^2 -Ketoesters Catalyzed by Amine Grafted on Silica Gel. Synlett, 2004, 2004, 2188-2190.	1.0	20
223	Agglomeration equilibria of hematite nanoparticles. Colloids and Interface Science Communications, 2016, 13, 19-22.	2.0	20
224	Acetalization of glycerol with ketones and aldehydes catalyzed by high silica Hβ zeolite. Molecular Catalysis, 2019, 479, 110608.	1.0	20
225	Reverse water-gas shift reaction over Pt/MoO _x /TiO ₂ : reverse Mars–van Krevelen mechanism <i>via</i> redox of supported MoO _x . Catalysis Science and Technology, 2021, 11, 4172-4180.	2.1	20
226	Crystal-size control and characterization of Na-4-mica prepared from kaolinite. Journal of Materials Chemistry, 2001, 11, 1222-1227.	6.7	19
227	Photocatalytic Water Splitting over Spontaneously Hydrated Layered Tantalate A2SrTa2O7·nH2O (A=H,) Tj ET	Qq110.78	84314 rgBT 0
228	Conjugate addition of unmodified aldehydes: recycle of heterogeneous amine catalyst and ionic liquid. Green Chemistry, 2002, 4, 461-463.	4.6	19
229	Photocatalytic degradation of hexachlorocyclohexane (HCH) by TiO2-pillared fluorine mica. Chemical Communications, 2002, , 2678-2679.	2.2	19
230	Ultrafine Na-4-mica:Â Uptake of Alkali and Alkaline Earth Metal Cations by Ion Exchange. Langmuir, 2004, 20, 4920-4925.	1.6	19
231	Heterogeneous Platinum Catalysts for Direct Synthesis of Trimethylamine by <i>N</i> -Methylation of Ammonia and Its Surrogates with CO ₂ /H ₂ . Chemistry Letters, 2017, 46, 68-70.	0.7	19
232	Surface Oxygen Vacancy Formation Energy Calculations in 34 Orientations of β-Ga ₂ O ₃ and I¸-Al ₂ O ₃ . Journal of Physical Chemistry C, 2020, 124, 10509-10522.	1.5	19
233	Effect of acidity and pore diameter of zeolites on detection of base molecules by zeolite thick film sensor. Microporous and Mesoporous Materials, 2011, 141, 20-25.	2.2	18
234	Synthesis of indoles via dehydrogenative N-heterocyclization by supported platinum catalysts. RSC Advances, 2015, 5, 1059-1062.	1.7	18

#	Article	IF	CITATIONS
235	Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. Journal of Catalysis, 2016, 344, 741-748.	3.1	18
236	Hydrothermal synthesis of microporous W–V–O as an efficient catalyst for ammoxidation of 3-picoline. Applied Catalysis A: General, 2016, 509, 118-122.	2.2	18
237	The Catalytic Reduction of Carboxylic Acid Derivatives and CO ₂ by Metal Nanoparticles on Lewisâ€Acidic Supports. Chemical Record, 2018, 18, 1374-1393.	2.9	18
238	Experimental and theoretical study of multinuclear indium–oxo clusters in CHA zeolite for CH ₄ activation at room temperature. Physical Chemistry Chemical Physics, 2019, 21, 13415-13427.	1.3	18
239	Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu ₁₃ . Journal of Physical Chemistry A, 2019, 123, 210-217.	1.1	18
240	Hydrolysis of amides to carboxylic acids catalyzed by Nb ₂ O ₅ . Catalysis Science and Technology, 2021, 11, 1949-1960.	2.1	18
241	Effect of Oxygen Vacancies on Adsorption of Small Molecules on Anatase and Rutile TiO ₂ Surfaces: A Frontier Orbital Approach. Journal of Physical Chemistry C, 2021, 125, 3827-3844.	1.5	18
242	Novel Na-3-Mica: Alkaline Earth Cation Exchange and Immobilization. Separation Science and Technology, 2003, 38, 679-694.	1.3	17
243	Kinetic analysis of reduction process of supported Rh/Al2O3 catalysts by time resolved in-situ UV–vis spectroscopy. Applied Catalysis A: General, 2012, 419-420, 142-147.	2.2	17
244	Promotional Effect of Water on Direct Dimethyl Ether Synthesis from Carbon Monoxide and Hydrogen Catalyzed by Cu–Zn/Al ₂ O ₃ . ACS Sustainable Chemistry and Engineering, 2017, 5, 3675-3680.	3.2	17
245	Catalytic NO–CO Reactions over La-Al ₂ O ₃ Supported Pd: Promotion Effect of La. Chemistry Letters, 2018, 47, 1036-1039.	0.7	17
246	Direct Phenolysis Reactions of Unactivated Amides into Phenolic Esters Promoted by a Heterogeneous CeO ₂ Catalyst. Chemistry - A European Journal, 2019, 25, 10594-10605.	1.7	17
247	High-silica Hβ zeolite catalyzed methanolysis of triglycerides to form fatty acid methyl esters (FAMEs). Fuel Processing Technology, 2020, 197, 106204.	3.7	17
248	Super Mg ²⁺ Conductivity around 10 ^{–3} S cm ^{–1} Observed in a Porous Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 8669-8675.	6.6	17
249	Influence of hydrothermal aging on the catalytic activity of sulfated zirconia. Applied Catalysis A: General, 2008, 348, 173-182.	2.2	16
250	Density functional theory calculation on the promotion effect of H2 in the selective catalytic reduction of NOx over Ag–MFI zeolite. Catalysis Today, 2010, 153, 90-94.	2.2	16
251	Unique effect of surface area of support on propene combustion over Pd/ceria. Catalysis Today, 2012, 185, 61-65.	2.2	16
252	Redox-Driven Reversible Structural Evolution of Isolated Silver Atoms Anchored to Specific Sites on γ-Al ₂ O ₃ . ACS Catalysis, 2022, 12, 544-559.	5.5	16

#	Article	IF	CITATIONS
253	Low-temperature selective reduction of NO with propene over alkaline-exchanged mordenites. Catalysis Letters, 1997, 45, 267-269.	1.4	15
254	Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by intercalation of oxides nanoparticles. Microporous and Mesoporous Materials, 2006, 95, 135-140.	2.2	15
255	Mechanism of Adsorptive Removal of tert-Butanethiol under Ambient Conditions with Silver Nitrate Supported on Silica and Silicaâ°'Alumina. Journal of Physical Chemistry C, 2007, 111, 3480-3485.	1.5	15
256	Local structure and NO adsorption/desorption property of Pd ²⁺ cations at different paired Al sites in CHA zeolite. Physical Chemistry Chemical Physics, 2021, 23, 22273-22282.	1.3	15
257	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	1.6	15
258	Lean NO _{<i>x</i>} Capture and Reduction by NH ₃ <i>via</i> NO ⁺ Intermediates over H-CHA at Room Temperature. Journal of Physical Chemistry C, 2021, 125, 1913-1922.	1.5	15
259	Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalysts. , 2018, , 45-64.		15
260	Unprecedented Reductive Esterification of Carboxylic Acids under Hydrogen by Reusable Heterogeneous Platinum Catalysts. Advanced Synthesis and Catalysis, 2015, 357, 1499-1506.	2.1	14
261	Highly active and noble-metal-alternative hydrogenation catalysts prepared by dealloying Ni–Si intermetallic compounds. Chemical Communications, 2019, 55, 13999-14002.	2.2	14
262	In-Exchanged CHA Zeolites for Selective Dehydrogenation of Ethane: Characterization and Effect of Zeolite Framework Type. Catalysts, 2020, 10, 807.	1.6	14
263	PdIn-Based Pseudo-Binary Alloy as a Catalyst for NO <i>_{<i>x</i>}</i> Removal under Lean Conditions. ACS Catalysis, 2020, 10, 11380-11384.	5.5	14
264	Catalytic Decomposition of N ₂ 0 in the Presence of O ₂ through Redox of Rh Oxide in a RhO _{<i>x</i>} /ZrO ₂ Catalyst. ACS Catalysis, 2022, 12, 6325-6333.	5.5	14
265	Selective catalytic reduction of nitrogen oxides with hydrocarbons over Zn–Al–Ga complex oxides. Catalysis Letters, 1998, 52, 157-161.	1.4	13
266	Persistent organic pollutants in rain at Niigata, Japan. Atmospheric Environment, 2003, 37, 4077-4085.	1.9	13
267	Redox property of tungstated-zirconia analyzed by time resolved in situ UV–vis spectroscopy. Applied Catalysis A: General, 2009, 365, 55-61.	2.2	13
268	Effect of Metal Oxide Promoters on Low Temperature CO Oxidation over Water-Pretreated Pt/Alumina Catalysts. Catalysis Letters, 2014, 144, 1689-1695.	1.4	13
269	Acceptorless dehydrogenative lactonization of diols by Pt-loaded SnO2 catalysts. RSC Advances, 2015, 5, 29072-29075.	1.7	13
270	Highly durable carbon-supported Pt catalysts prepared by hydrosilane-assisted nanoparticle deposition and surface functionalization. Chemical Communications, 2015, 51, 5883-5886.	2.2	13

#	Article	IF	CITATIONS
271	Interface Effects in Hydrogen Elimination Reaction from Isopropanol by Ni ₁₃ Cluster on Î,-Al ₂ O ₃ (010) Surface. Journal of Physical Chemistry C, 2017, 121, 3488-3495.	1.5	13
272	Particle-impact analysis of the degree of cluster formation of rutile nanoparticles in aqueous solution. Physical Chemistry Chemical Physics, 2017, 19, 3911-3921.	1.3	13
273	Combined theoretical and experimental study on alcoholysis of amides on CeO2 surface: A catalytic interplay between Lewis acid and base sites. Catalysis Today, 2018, 303, 256-262.	2.2	13
274	Kinetic modeling of steady-state NH3-SCR over a monolithic Cu-CHA catalyst. Catalysis Today, 2020, 352, 237-242.	2.2	13
275	A CHA zeolite supported Ga-oxo cluster for partial oxidation of CH4 at room temperature. Catalysis Today, 2020, 352, 118-126.	2.2	13
276	Sol–Gel Prepared Sn–Al2O3Catalysts for the Selective Reduction of NO with Propene. Bulletin of the Chemical Society of Japan, 2001, 74, 2075-2081.	2.0	12
277	Hydrogenation of pyrene using Pd catalysts supported on tungstated metal oxides. Applied Catalysis A: General, 2010, 387, 166-172.	2.2	12
278	Heterogeneous nickel catalyst for selective hydration of silanes to silanols. Journal of Molecular Catalysis A, 2012, 365, 50-54.	4.8	12
279	In situ/operando spectroscopic studies on NH3–SCR reactions catalyzed by a phosphorus-modified Cu-CHA zeolite. Catalysis Today, 2021, 376, 73-80.	2.2	12
280	Selective catalytic reduction of NO with NH3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catalysis Science and Technology, 2021, 11, 1780-1790.	2.1	12
281	Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc. Physical Chemistry Chemical Physics, 2021, 23, 23768-23777.	1.3	12
282	Michael reaction of -ketoesters with vinyl ketones by iron(III)-exchanged fluorotetrasilicic mica: catalytic and spectroscopic studies. Journal of Catalysis, 2005, 229, 470-479.	3.1	11
283	Addition of olefins to acetylacetone catalyzed by cooperation of BrÃ,nsted acid site of zeolite and gold cluster. Applied Catalysis A: General, 2011, 400, 171-175.	2.2	11
284	Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Interfaces, 2020, 12, 9448-9456.	4.0	11
285	Reverse Water-Gas Shift Reaction via Redox of Re Nanoclusters Supported on TiO2. Chemistry Letters, 2021, 50, 158-161.	0.7	11
286	Synthesis of novel Na-rich mica and selective strontium ion exchange and fixation. Separation Science and Technology, 2002, 37, 1927-1942.	1.3	10
287	Kinetic and spectroscopic insights into the behaviour of Cu active site for NH3-SCR over zeolites with several topologies. Catalysis Science and Technology, 2021, 11, 2718-2733.	2.1	10
288	Silica-decorated Ni–Zn alloy as a highly active and selective catalyst for acetylene semihydrogenation. Catalysis Science and Technology, 2021, 11, 4016-4020.	2.1	10

#	Article	IF	CITATIONS
289	Mechanism of Standard NH ₃ –SCR over Cu-CHA via NO ⁺ and HONO Intermediates. Journal of Physical Chemistry C, 2022, 126, 11594-11601.	1.5	10
290	Niâ^'Mgâ^'O Catalyst Driven by Direct Light Irradiation for Catalytically-Activated Foam Absorber in a Solar Reforming Receiver-Reactor. Energy & Fuels, 2003, 17, 914-921.	2.5	9
291	Selective C3-alkenylation of oxindole with aldehydes using heterogeneous CeO2 catalyst. Chinese Journal of Catalysis, 2020, 41, 970-976.	6.9	9
292	Surface activation by electron scavenger metal nanorod adsorption on TiH ₂ , TiC, TiN, and Ti ₂ O ₃ . Physical Chemistry Chemical Physics, 2021, 23, 16577-16593.	1.3	9
293	Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines. Applied Catalysis A: General, 2021, 619, 118158.	2.2	9
294	Electroassisted Propane Dehydrogenation at Low Temperatures: Far beyond the Equilibrium Limitation. Jacs Au, 2021, 1, 1688-1693.	3.6	9
295	High-loading Ga-exchanged MFI zeolites as selective and coke-resistant catalysts for nonoxidative ethane dehydrogenation. Catalysis Science and Technology, 2022, 12, 986-995.	2.1	9
296	Stereoselective hydrogenation of linoleic acid over Ir/FSM-16 catalyst. Applied Catalysis A: General, 2002, 228, 75-82.	2.2	8
297	Sulfur promoted Pt/SiO2 catalyzed cross-coupling of anilines and amines. Applied Catalysis A: General, 2012, 417-418, 37-42.	2.2	8
298	Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols. Topics in Catalysis, 2016, 59, 1740-1747.	1.3	8
299	Hydrosilane-Assisted Formation of Metal Nanoparticles on Graphene Oxide. Bulletin of the Chemical Society of Japan, 2016, 89, 67-73.	2.0	8
300	Thermally Induced Transformation of Sb-Containing Trigonal Mo ₃ VO _{<i>x</i>} to Orthorhombic Mo ₃ VO _{<i>x</i>} and Its Effect on the Catalytic Ammoxidation of Propane. Chemistry of Materials, 2020, 32, 1506-1516.	3.2	8
301	Lean NO <i>x</i> Reduction by In-Situ-Formed NH ₃ under Periodic Lean/Rich Conditions over Rhodium-Loaded Al-Rich Beta Zeolites. ACS Catalysis, 2021, 11, 12293-12300.	5.5	8
302	Enhancement of the hydrodesulfurization and Câ^'S bond cleavage activities of rhodium phosphide catalysts by platinum addition. Journal of Catalysis, 2022, 408, 294-302.	3.1	8
303	Effect of Pt and Ba content on NO x Storage and Reduction Over Pt/Ba/Al2O3. Topics in Catalysis, 2010, 53, 584-590.	1.3	7
304	Electronic effect of Na promotion for selective mono-N-alkylation of aniline with di-iso-propylamine by Pt/SiO2 catalysts. Journal of Molecular Catalysis A, 2012, 353-354, 171-177.	4.8	7
305	Silicaâ€Decoration Boosts Ni Catalysis for (De)hydrogenation: Stepâ€Abundant Nanostructures Stabilized by Silica. ChemCatChem, 2021, 13, 1306-1310.	1.8	7
306	AFX Zeolite for Use as a Support of NH3-SCR Catalyst Mining through AICE Joint Research Project of Industries–Academia–Academia. Catalysts, 2021, 11, 163.	1.6	7

#	Article	IF	CITATIONS
307	Synthesis of Zeolitic Ti, Zr-Substituted Vanadotungstates and Investigation of Their Catalytic Activities for Low Temperature NH ₃ -SCR. ACS Catalysis, 2021, 11, 14016-14025.	5.5	7
308	Machine Learning Analysis of Literature Data on the Water Gas Shift Reaction toward Extrapolative Prediction of Novel Catalysts. Chemistry Letters, 2022, 51, 269-273.	0.7	7
309	<i>In Situ</i> Spectroscopic Studies of the Redox Catalytic Cycle in NH ₃ –SCR over Chromium-Exchanged Zeolites. Journal of Physical Chemistry C, 2022, 126, 11082-11090.	1.5	7
310	Deconvolution Analysis of Cu L-edge XANES for Quantification of Copper (II) Coordinations in Copper-aluminate Catalysts. Japanese Journal of Applied Physics, 1999, 38, 44.	0.8	6
311	Extraordinarily large kinetic isotope effect on alkene hydrogenation over Rh-based intermetallic compounds. Science and Technology of Advanced Materials, 2019, 20, 805-812.	2.8	6
312	Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data. ChemCatChem, 2019, 11, 4445-4445.	1.8	6
313	Catalytic Activity of Rhodium Phosphide for Selective Hydrodeoxygenation of Phenol. Chemistry Letters, 2019, 48, 471-474.	0.7	6
314	High dimensionally structured W-V oxides as highly effective catalysts for selective oxidation of toluene. Catalysis Today, 2021, 363, 60-66.	2.2	6
315	Selective catalytic reduction of NO over Cu-AFX zeolites: mechanistic insights from <i>in situ</i> / <i>operando</i> spectroscopic and DFT studies. Catalysis Science and Technology, 2021, 11, 4459-4470.	2.1	6
316	Effect of oxygen storage materials on the performance of Pt-based three-way catalysts. Catalysis Science and Technology, 2022, 12, 3534-3548.	2.1	6
317	Enhanced De-NOxPerformance of Ag-Al2O3Catalyst by Increasing Carbon Number of Hydrocarbon Reductants. Chemistry Letters, 1999, 28, 1079-1080.	0.7	5
318	Experimental and Theoretical Investigation of Metal–Support Interactions in Metal-Oxide-Supported Rhenium Materials. Journal of Physical Chemistry C, 2022, 126, 4472-4482.	1.5	5
319	Layered silicate stabilises diiron to mimic UV-shielding TiO2 nanoparticle. Materials Today Nano, 2022, 19, 100227.	2.3	5
320	Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catalysis Today, 2023, 411-412, 113824.	2.2	5
321	24 Catalytic direct 1,4-conjugate addition of aldehydes to vinylketones on N-methyl-3-aminopropylated FSM-16. Studies in Surface Science and Catalysis, 2003, , 145-148.	1.5	4
322	Role of Ba in an Al ₂ O ₃ ‣upported Pdâ€based Catalyst under Practical Threeâ€Way Catalysis Conditions. ChemCatChem, 2022, 14, .	1.8	4
323	Electrodeposition Study on a Single-crystal Titanium Dioxide Electrode: Platinum on a Niobium-doped Titanium Dioxide(110) Electrode. Chemistry Letters, 2014, 43, 1797-1799.	0.7	3
324	TiO2 -Supported Re as a General and Chemoselective Heterogeneous Catalyst for Hydrogenation of Carboxylic Acids to Alcohols. Chemistry - A European Journal, 2017, 23, 980-980.	1.7	3

#	Article	IF	CITATIONS
325	Inside Cover: Silica-Supported Silver Nanoparticles with Surface Oxygen Species as a Reusable Catalyst for Alkylation of Arenes (ChemCatChem 1/2010). ChemCatChem, 2010, 2, 2-2.	1.8	2
326	<i>N,N</i> â€Ðimethylformamideâ€protected Fe ₂ O ₃ Combined with Pt Nanoparticles: Characterization and Catalysis in Alkene Hydrosilylation. ChemCatChem, 2022, 14, .	1.8	2
327	Propane Dehydrogenation Catalysis of Titanium Hydrides: Positive Effect of Hydrogen Co-feeding. Chemistry Letters, 2022, 51, 88-90.	0.7	2
328	Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catalysis Science and Technology, 2022, 12, 2398-2410.	2.1	2
329	Trends in Surface Oxygen Formation Energy in Perovskite Oxides. ACS Omega, 2022, 7, 18427-18433.	1.6	2
330	Application to Electroluminescence Devices with Dimethylformamide-Stabilized Niobium Oxide Nanoparticles. ACS Applied Nano Materials, 2022, 5, 7658-7663.	2.4	2
331	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized ruthenium nanoparticle catalyst for β-alkylated dimer alcohol formation <i>via</i> Guerbet reaction of primary alcohols. RSC Advances, 2022, 12, 16599-16603.	1.7	2
332	Photocatalytic Water Splitting on Ni-Intercalated Ruddlesden—Popper Tantalate H2La2/3Ta2O7 ChemInform, 2005, 36, no.	0.1	1
333	Catalytic Methylation of Benzene over Pt/MoOx/TiO2 and Zeolite Catalyst Using CO2 and H2. Chemistry Letters, 2022, 51, 149-152.	0.7	1
334	Mechanistic study on three-way catalysis over Pd/La/Al2O3 with high La loading. Catalysis Today, 2022, , .	2.2	1
335	Experimental studies on intracrystalline diffusion of NO and NH3 in Cu-CHA. Catalysis Today, 2023, 411-412, 113823.	2.2	1
336	Fe3+-Exchanged Fluorotetrasilicic Mica as an Active and Reusable Catalyst for Michael Reaction ChemInform, 2004, 35, no.	0.1	0
337	Photocatalytic Water Splitting on Hydrated Layered Perovskite Tantalate A2SrTa2O7×nH2O (A: H, K, and) Tj E	109110.	.784314 rgBT
338	SO3H-Functionalized Silica for Acetalization of Carbonyl Compounds with Methanol and Tetrahydropyranylation of Alcohols ChemInform, 2004, 35, no.	0.1	0
339	Sustainable Transesterification of ?-Ketoesters Catalyzed by Amine Grafted on Silica Gel ChemInform, 2005, 36, no.	0.1	Ο
340	Origin of Nb2 O5 Lewis Acid Catalysis for Activation of Carboxylic Acids in the Presence of a Hard Base. ChemPhysChem, 2018, 19, 2809-2809.	1.0	0
341	Direct Phenolysis Reactions of Unactivated Amides into Phenolic Esters Promoted by a Heterogeneous CeO 2 Catalyst. Chemistry - A European Journal, 2019, 25, 10515-10515.	1.7	Ο
342	Esterification of Tertiary Amides by Alcohols Through Câ^'N Bond Cleavage over CeO 2. ChemCatChem, 2019, 11, 15-15.	1.8	0

0

#	Article	IF	CITATIONS
343	Studies of Reaction Mechanism of Automobile Catalysts by in-situ Spectroscopy. Hyomen Kagaku, 2009, 30, 98-103.	0.0	0

Machine Learning Predictions of Adsorption Energies of CH4-Related Species. , 2020, , 135-149.